The inverse problem of stabilization of a spherical pendulum in a given position under oblique vibration.

Authors

  • Аlexander G. Petrov Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101, pr. Vernadskogo, Moscow, 119526, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.206

Abstract

The inverse problem is posed of stabilizing a spherical pendulum (a mass point at the end of a weightless solid rod of length l ) in a given position using high-frequency vibration of the suspension point. The position of the pendulum is determined by the angle between the pendulum rod and the gravity acceleration vector. For any given position of the pendulum, a series of oblique vibration parameters (amplitude of the vibration velocity and the angle between the vibration velocity vector and the vertical) were found that stabilize the pendulum in this position. From the obtained series of solutions, the parameters of optimal vibration (vibration with a minimum amplitude of velocity) are selected depending on the position of the pendulum. The region of initial conditions is studied, of which the optimal vibration leads the pendulum to a predetermined stable position after a sufficiently long time. This area, following N. F.Morozov et al., called the area of attraction.

Keywords:

spherical pendulum, stability, vibration of the suspension point, inverse problem

Downloads

Download data is not yet available.
 

References

Литература

1. Stephenson A. On a new type of dynamical stability. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 52 (8), 1–10 (1908).

2. Боголюбов Н.Н. Теория возмущений в нелинейной механике. В: Сб. тр. Ин-та строит. механики АН УССР, (14), 9–34 (1950).

3. Капица П.Л. Динамическая устойчивость маятника при колеблющейся точке подвеса. Журн. эксперим. и теорет. физики 21, вып. 5, 588–598 (1951).

4. Капица П.Л. Маятник с вибрирующим подвесом. Успехи физических наук 44, вып. 1, 7–20 (1951).

5. Богаевский В.Н., Повзнер А.Я. Алгебраические методы в нелинейной теории возмущений. Москва, Наука (1987).

6. Акуленко Л.Д. Асимптотический анализ динамических систем подверженных высокочастотным воздействиям. ПММ 58, вып. 3, 23–31 (1994).

7. Маркеев А.П. О динамике сферического маятника с вибрирующим подвесом. ПММ 63, вып. 2, 213–219 (1999).

8. Морозов Н.Ф., Беляев А.К., Товстик П.Е., Товстик Т.П. Области притяжения в обобщенной задаче Капицы. Доклады Академии наук 487 (5), 502–506 (2019). https://doi.org/10.31857/S0869-56524875502-506

9. Морозов Н.Ф., Беляев А.К., Товстик П.Е., Товстик Т.П. Устойчивость вертикального стержня на вибрирующей опоре. Доклады Академии наук 482 (2), 155–159 (2018).

10. Беляев А.К., Морозов Н.Ф., Товстик П.Е., Товстик Т.П. Устойчивость гибкого вертикального стержня на вибрирующем основании. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 3, 477–488 (2018). https://doi.org/10.21638/11701/spbu01.2018.311

11. Буланчук П.О., Петров А.Г. Об управлении движением сферического маятника с помощью вибрации точки подвеса. Доклады Академии наук 430 (5), 627–630 (2010).

12. Ландау Л.Д., Лифшиц Е.М. Механика. Москва, Наука (1965).

13. Стрижак Т.Г. Метод усреднения в задачах механики. Киев, Донецк, Вища школа (1982).

14. Блехман И.И. Вибрационная механика. Москва, Физматлит (1994).

15. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. Москва, Наука (1974).

16. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. Москва, Наука (1988).

References

1. Stephenson A. On a new type of dynamical stability. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 52 (8), 1–10 (1908).

2. Bogolyubov N.N. Perturbation theory in nonlinear mechanics. In: Sbornik trudov Instituta stroitel’noj mekhaniki AN USSR, (14), 9–34 (1950). (In Russian)

3. Kapica P.L. Dynamic stability of a pendulum at an oscillating suspension point. Journal of Experimental and Theoretical Physics 21, iss. 5, 588–598 (1951). (In Russian)

4. Kapica P.L. A pendulum with a vibrating suspension. Uspekhi fizicheskikh nauk 44, iss. 1, 7–20 (1951). (In Russian)

5. Bogaevskij V.N., Povzner A.Ja. Algebraic methods in nonlinear perturbation theory. Moscow, Nauka Publ. (1987). (In Russian)

6. Akulenko L.D. Asymptotic analysis of dynamic systems exposed to high frequency influences. Journal of Applied Mathematics and Mechanics 58, iss. 3, 23–31 (1994). (In Russian)

7. Markeev A.P. On the dynamics of a spherical pendulum with a vibrating suspension. Journal of Applied Mathematics and Mechanics 63, iss. 2, 213–219 (1999). (In Russian)

8. Morozov N.F., Beljaev A.K., Tovstik P.E., Tovstik T.P. Regions of attraction in the generalized Kapitsa problem. Doklady Akademii nauk 487 (5), 502–506 (2019). https://doi.org/10.31857/S0869-56524875502-506 (In Russian)

9. Morozov N.F., Beljaev A.K., Tovstik P. E., Tovstik T.P. Stability of the vertical rod on the vibrating support. Doklady Akademii nauk 482 (2), 155–159 (2018). (In Russian)

10. Belyaev A.K., Morozov N.F., Tovstik P. E., Tovstik T.P. Stability of а flexible vertical rod on the vibrating support. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 3, 477–488 (2018). https://doi.org/10.21638/11701/spbu01.2018.311 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ., Math. 51, 296–304 (2018). https://doi.org/10.3103/S1063454118030020].

11. Bulanchuk P.O., Petrov A.G. On controlling the motion of a spherical pendulum by vibrating the suspension point. Doklady Akademii nauk 430 (5), 627–630 (2010). (In Russian)

12. Landau L.D., Lifshic E.M. Mechanics. Moscow, Nauka Publ. (1965). (In Russian)

13. Strizhak T.G. Averaging method in problems of mechanics. Kiev, Donetsk, Vishha shkola Publ. (1982). (In Russian)

14. Blehman I.I. Vibration mechanics. Moscow, Fizmatlit Publ. (1994). (In Russian)

15. Bogoljubov N.N., Mitropol’skij Ju.A. Asymptotic methods in the theory of nonlinear oscillations. Moscow, Nauka Publ. (1974). (In Russian)

16. Zhuravlev V.F., Klimov D.M. Applied methods in the theory of oscillations. Moscow, Nauka Publ. (1988). (In Russian)

Published

2021-07-21

How to Cite

Petrov А. G. (2021). The inverse problem of stabilization of a spherical pendulum in a given position under oblique vibration. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(2), 255–269. https://doi.org/10.21638/spbu01.2021.206

Issue

Section

In memoriam of P. E. Tovstik