Equilibria and oscillations in a reversible mechanical system
DOI:
https://doi.org/10.21638/spbu01.2022.115Abstract
The method of stochastic molecular modeling, developed by the authors for calculating the transport coefficients of rarefied gas in a free medium, is generalized to describe transport processes in confined conditions. The phase trajectories of the studied molecular system are simulated stochastically, and the simulation of the dynamics of the molecule is split into processes. First, its shift in the configuration space is realized, and then a possible collision with other molecules is played out. The calculation of all observables, in particular, the transport coefficients is carried out by averaging over an ensemble of independent phase trajectories. The interaction of gas molecules with the boundary is described by mirror or mirror-diffuse laws. The efficiency of the algorithm is demonstrated by calculating the selfdiffusion coefficient of argon in the nanochannel. The accuracy of modeling is investigated, its dependence on the number of particles and phase trajectories used for averaging. The viscosity of rarefied gases in the nanochannel has been systematically studied. It is shown that it is non-isotropic, and its difference along and across the channel is determined by the interaction of gas molecules with the channel walls. By changing the material of the walls, it is possible to significantly change the viscosity of the gas, and it can be several times greater than in volume, or less. The indicated anisotropy of viscosity is recorded not only in nano-, but also in microchannels.Keywords:
viscosity, diffusion, molecular modeling, nanochannel, rarefied gas, transfer processes
Downloads
Download data is not yet available.
References
Литература
1. Li D. (ed.) Encyclopedia of Microfluidics and Nanofluidics. Springer Science+Business Media (2008).
2. Michaelides E. E. Thermodynamic and Transport Properties. Switzerland, Springer (2014).
3. Рудяк В.Я., Минаков А.В. Современные проблемы микро- и нанофлюидики. Новосибирск, Наука (2016).
4. Рудяк В.Я., Лежнев Е.В. Стохастический метод моделирования коэффициентов переноса разреженного газа. Мат. моделирование 29 (3), 113–122 (2017).
5. Rudyak V.Ya., Lezhnev E.V. Stochastic Algorithm for Simulating Gas Transport Coefficients. J. Comp. Physics 355, 95–103 (2018). https://doi.org/10.1016/j.jcp.2017.11.001
6. Rudyak V.Ya., Lezhnev E.V. Stochastic Molecular Modeling the Transport Coefficients of Rarefied Gas and Gas Nanosuspensions. Nanosystems: Physics, Chemistry, Mathematics 11 (3), 285–293 (2020). https://doi.org/10.17586/2220-8054-2020-11-3-285-293
7. Норман В.В., Стегайлов В.В. Стохастическая теория метода классической молекулярной динамики. Мат. моделирование 24 (3), 305–333 (2012).
8. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. В: Гид- ромеханика. Т. 2. Новосибирск, НГАСУ (2005).
9. Chapman S., Cowling T.G. The Mathematical Theory of Non-Uniform Gases. Cambridge, Cambridge University Press (1990).
10. Cercignani C. Theory and Application of the Boltzmann Equation. Edinburgh, London, Scottish Academic Press (1975).
11. Зубарев Д.Н. Неравновесная статистическая термодинамика. Москва, Наука (1971).
12. Ernst M.H. Formal Theory of Transport Coefficients to General Order in the Density. Physica 32 (2), 209–243 (1966). https://doi.org/10.1016/0031-8914(66)90055-3
13. Хонькин А.Д. Уравнения для пространственно-временных и временных корреляционных функций и доказательство эквивалентности результатов методов Чепмена-Энскога и временных корреляционных функций. ТМФ 5 (1), 125–135 (1970).
14. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular Theory of Gases and Liquids. New York, London, John Wiley and Sons, Chapman and Hall (1954).
15. Григорьев И.С., Мейлихова Е. З. (ред.) Физические величины. Москва, Энергоатомиздат (1991).
16. Рыско С.Я. (ред.) Теплофизические свойства неона, аргона, криптона и ксенона. Москва, Изд-во стандартов (1967).
17. Алексеев И.В., Кустова Е.В. Расчет структуры ударной волны в СО2 с учетом объемной вязкости. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 4 (62), вып. 4, 642–653 (2017). https://doi.org/10.21638/11701/spbu01.2017.412
18. Нагнибеда Е.А., Папина К.В. Неравновесная колебательная и химическая кинетика в потоках воздуха в соплах. Вестник Санкт-Петербургского университета. Математика. Меха- ника. Астрономия 5 (63), вып. 2, 287–299 (2018). https://doi.org/10.21638/11701/spbu01.2018.209
19. Корниенко О.В., Кустова Е.В. Влияние переменного диаметра молекул на коэффици- ент вязкости в поуровневом приближении. Вестник Санкт-Петербургского университета. Ма- тематика. Механика. Астрономия 3 (61), вып. 3, 457–467 (2016). https://doi.org/10.21638/11701 /spbu01.2016.314
20. Рудяк В.Я. Статистическая теория диссипативных процессов в газах и жидкостях. Новосибирск, Наука (1987).
21. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, Clarendon Press (1994).
22. Иванов М.С., Рогазинский С.В. Метод прямого статистического моделирования в ди- намике разреженного газа. Новосибирск, ВЦ СО РАН (1988).
23. Ivanov M. S., Rogasinsky S.V., Rudyak V.Ya. Direct Statistical Simulation Method and Master Kinetic Equation. Progr. Astro. Aero. 117, 171–181 (1989).
24. Roohi E., Stefanov S. Collision Partner Selection Schemes in DSMC: From Micro/Nano Flows to Hypersonic Flows. Physics Reports 656 (1), 1–38 (2016). https://doi.org/10.1016/j.physrep.2016.08.002
References
1. Li D. (ed.) Encyclopedia of Microfluidics and Nanofluidics. Springer Science+Business Media (2008).
2. Michaelides E. E. Thermodynamic and Transport Properties. Switzerland, Springer (2014).
3. Rudyak V.Ya., Minakov A.V. Modern Problems of Micro- and Nanofluidics. Novosibirsk, Nauka Publ. (2016). (In Russian)
4. Rudyak V.Ya., Lezhnev E.V. Stochastic Method for Modeling Rarefied Gas Transport Coefficients. Math. Modeling 29 (3), 113–122 (2017). (In Russian)
5. Rudyak V.Ya., Lezhnev E.V. Stochastic Algorithm for Simulating Gas Transport Coefficients. J. Comp. Physics 355, 95–103 (2018). https://doi.org/10.1016/j.jcp.2017.11.001
6. Rudyak V.Ya., Lezhnev E.V. Stochastic Molecular Modeling the Transport Coefficients of Rarefied Gas and Gas Nanosuspensions. Nanosystems: Physics, Chemistry, Mathematics 11 (3), 285–293 (2020). https://doi.org/10.17586/2220-8054-2020-11-3-285-293
7. Norman G. E., Stegailov V.V. Stochastic Theory of the Classical Molecular Dynamics Method. Math. Modeling 24 (3), 305–333 (2012). (In Russian)
8. Rudyak V.Ya. Statistical Aerohydromechanics of Homogeneous and Heterogeneous Media. In: Hydromechanics. Vol. 2. Novosibirsk, NSUACE Publ. (2005). (In Russian)
9. Chapman S., Cowling T.G. The Mathematical Theory of Non-Uniform Gases. Cambridge, Cambridge University Press (1990).
10. Cercignani C. Theory and Application of the Boltzmann Equation. Edinburgh, London, Scottish Academic Press (1975).
11. Zubarev D.N. Neravnovesnaia statisticheskaia termodinamika. Moscow, Nauka Publ. (1971). (In Russian) [Eng. transl.: Zubarev D.N. Nonequilibrium Statistical Thermodynamics. New York, New York Consultants Bureau (1974)].
12. Ernst M.H. Formal Theory of Transport Coefficients to General Order in the Density. Physica 32 (2), 209–243 (1966). https://doi.org/10.1016/0031-8914(66)90055-3
13. Khon’kin A.D. Equations for Space-Time and Time Correlation Functions and Proof of the Equivalence of the Results of the Chapman-Enskog Methods and Time Correlation Functions. Theoret. and Math. Phys. 5 (1), 125–135 (1970).
14. Hirschfelder J.O., Curtiss Ch.F., Bird R.B. Molecular Theory of Gases and Liquids. New York, London, John Wiley and Sons, Chapman and Hall (1954).
15. Grigor’ev I. S., Meilikhov E. Z. (eds) Physical Quantities: Handbook. Moscow, Energoatomizdat Publ. (1996). (In Russian)
16. Rysko S.Ya. (ed.) Thermophysical properties of neon, argon, krypton and xenon. Moscow, Izdatel’stvo standartov Publ. (1967).
17. Alekseev I.V., Kustova E.V. Shock wave structure in CO2 taking into account bulkviscosity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 4 (62), iss. 4, 642–653 (2017). https://doi.org/10.21638/11701/spbu01.2017.412 (In Russian)
18. Nagnibeda E.A., Papina K.V. Non-equilibrium vibrational and chemical kineticsin air flows in nozzles. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 2, 287–299 (2018). https://doi.org/10.21638/11701/spbu01.2018.209 (In Russian)
19. Kornienko O.V., Kustova E.V. Influence of variable molecular diameter on the viscosity coefficient in the state-to-state approach. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 3 (61), iss. 3, 457–467 (2016). https://doi.org/10.21638/11701/spbu01.2016.314 (In Russian)
20. Rudyak V.Ya. Statistical Theory of Dissipative Processes in Gases and Liquids. Novosibirsk, Nauka Publ. (1987). (In Russian)
21. Bird G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford, Clarendon Press (1994).
22. Ivanov M. S., Rogazinsky S.V. Direct Statistical Model Method Dynamics in the Dynamics of a Rarefied Gas. Novosibirsk, Computing Center SB RAS Publ. (1988). (In Russian)
23. Ivanov M. S., Rogasinsky S.V., Rudyak V.Ya. Direct Statistical Simulation Method and Master Kinetic Equation. Progr. Astro. Aero. 117, 171–181 (1989).
24. Roohi E., Stefanov S. Collision Partner Selection Schemes in DSMC: From Micro/Nano Flows to Hypersonic Flows. Physics Reports 656 (1), 1–38 (2016). https://doi.org/10.1016/j.physrep.2016.08.002
Downloads
Published
2022-04-11
How to Cite
Rudyak, V. Y., Lezhnev, E. V., & Lubimov, D. N. (2022). Equilibria and oscillations in a reversible mechanical system. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(1), 152–163. https://doi.org/10.21638/spbu01.2022.115
Issue
Section
Mechanics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.