Metric invariants of a second-order hypersurface in an n-dimensional Euclidean space

Authors

  • Dmitrii Yu. Volkov St Petersburg State University of Aerospace Instrumentation, 67, ul. Bolshaya Morskaya, St Petersburg, 190000, Russian Federation
  • Kseniia V. Galunova Peter the Great St Petersburg Polytechnic University, 29, ul. Polytechnicheskaya, StPetersburg, 195251, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.204

Abstract

The article is devoted to the classical problem of analytic geometry in n-dimensional Euclidean space: finding the canonical equation of a quadric. The canonical equation is determined by the invariants of the second-order surface equation. Invariants are quantities that do not change under an affine change of space coordinates. S. L. Pevsner found a convenient system of the following invariants: q is the rank of the extended matrix of the system for determining the center of symmetry of the surface; the roots of the characteristic polynomial of the matrix of quadratic terms of the surface equation, i. e. the eigenvalues of this matrix; K_q is the coefficient of the variable λ to the power of n − q in a polynomial equal to the determinant of the n + 1 order matrix obtained by a certain rule from the original surface equation. All the coefficients of the canonical equations of quadrics are expressed through eigenvalues of the matrix of quadratic terms and the coefficient K_q. Pevsner’s result is proved in a new way. Elementary properties of determinants are used in the proof. This algorithm for finding the canonical equation of a quadric is a very convenient algorithm for computer graphics.

Keywords:

invariant, second-order hypersurfaces

Downloads

Download data is not yet available.
 

References

Литература

1. Розенфельд Б.А. Многомерные пространства. Москва, Наука (1966).

2. Винберг Э.Б., Попов В.Л. Теория инвариантов. В: Алгебраическая геометрия — 4. Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления. Т. 55, 137–309. Москва (1989).

3. Гуревич Г.Б. Основы теории алгебраических инвариантов. Москва, Гостехиздат (1948).

4. Olver P. J. Classical invariant theory. In Ser.: London Mathematical Society Student Texts, vol. 44. Cambridge, Cambridge University Press (1999).

5. Casas-Alvero E. Analytic projective geometry. In Ser.: EMS Textbooks in Mathematics. Z¨urich, European Mathematical Society (2014).

6. Schreier O., Sperner E. Projective geometry of n-dimensions. Introduction to modern algebra and matrix theory. Vol. 2. New York, Chelsea Publ. (1961).

7. Делоне Б.Н., Райков Д.А. Аналитическая геометрия. Т. 2. Москва, Гостехиздат (1948).

8. Моденов П.С. Аналитическая геометрия. Москва, Изд-во Московского университета (1969).

9. Шилов Г. Е. Введение в теорию линейных пространств. Москва, Гостехиздат (1956).

10. Певзнер C.Л. Инварианты и канонические уравнения гиперповерхности второго порядка в n-мерном пространстве. Publications De L’Institut Mathematique. Nouvelle Serie 55 (69), 75–88 (1994).

11. Farin G. E., Farin G. Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann Publ. (2002).

References

1. Rosenfeld B.A. Multidimensional spaces. Moscow, Nauka Publ. (1966).

2. Vinberg E. B., Popov V. L. Invariant theory. In: Algebraic geometry — 4. Itogi Nauki i Tekhniki. Sovrem. Probl. Mat. Fund. naprav. Vol. 55, 137–314. Moscow (1989). (In Russian)

3. Gurevich G.B. Osnovy teorii algebraicheskih invariantov. Moscow, Gostekhizdat Publ. (1948). (In Russian) [Eng. transl.: Gurevich G.B. Foundations of the theory of algebraic invariants. Groningen, P. Noordhoff (1964)].

4. Olver P. J. Classical invariant theory. In Ser.: London Mathematical Society Student Texts, vol. 44. Cambridge, Cambridge University Press (1999).

5. Casas-Alvero E. Analytic projective geometry. In Ser.: EMS Textbooks in Mathematics. Z¨urich, European Mathematical Society (2014).

6. Schreier O., Sperner E. Projective geometry of n-dimensions. Introduction to modern algebra and matrix theory. Vol. 2. New York, Chelsea Publ. (1961).

7. Delone B.N., Raikov D.A. Analytical geometry. Vol. 2. Moscow, Gostehizdat Publ. (1948). (In Russian)

8. Modenov P. S. Analytical geometry. Moscow, Moscow University Press (1969). (In Russian)

9. Shilov G.E. Vvedenie v teoriju linejnyh prostranstv. Moscow, Gostehizdat Publ. (1956). (In Russian) [Eng. transl.: Shilov G.E. An Introduction to the Theory of Linear Spaces. In Ser.: Dover Books on Mathematics. Dover Publ. (1971)].

10. Pevzner S. L. Invariants and canonical equations of a second-order hypersurface in an n-dimensional Euclidean space. Publications De L’Institut Mathematique. Nouvelle Serie 55 (69), 75–88 (1994). (In Russian)

11. Farin G. E., Farin G. Curves and surfaces for CAGD: A practical guide. Morgan Kaufmann Publ. (2002).

Published

2022-07-06

How to Cite

Volkov, D. Y., & Galunova, K. V. (2022). Metric invariants of a second-order hypersurface in an n-dimensional Euclidean space. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(2), 219–228. https://doi.org/10.21638/spbu01.2022.204

Issue

Section

Mathematics