On integral equations of cracks of a new type

Authors

  • Vladimir A. Babeshko Southern Scientific Center of the Russian Academy of Sciences, 41, ul. Chekhova, Rostov-on-Don, 344006, Russian Federation, Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation
  • Olga V. Evdokimova Southern Scientific Center of the Russian Academy of Sciences, 41, ul. Chekhova, Rostov-on-Don, 344006, Russian Federation
  • Olga M. Babeshko Kuban State University, 149, ul. Stavropolskaya, Krasnodar, 350040, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.302

Abstract

For the first time, the paper develops a new type of crack modeling method that allows describing them in environments of complex rheologies. It is based on a new universal modeling method previously published by the authors, used in boundary value problems for systems of partial differential equations. The advantage of the method is the possibility of avoiding the need to solve complex boundary value problems for systems of partial differential equations by replacing them with separate differential equations, among which the Helmholtz equations are the simplest. Namely, with the help of combinations of solutions of boundary value problems for this equation, it is possible to describe the behavior of complex solutions of multicomponent boundary value problems. In this paper, for the first time, the method is applied to a mixed boundary value problem for cracks of a new type. Cracks of a new type, complementing the Griffiths cracks, were discovered during the study of fractures of lithospheric plates that converge at the ends during oncoming traffic along the Conrad boundary. In the course of the study, Kirchhoff plates were adopted as models of lithospheric plates. The method developed in the published article is aimed at the possibility of describing models of approaching objects similar to lithospheric plates in the form of deformable plates of more complex rheologies. In particular, it can be thermoelectroelastic plates or other rheology. In the process of solving problems using Kirchhoff models for lithospheric plates, there was a problem of calculating some functionals that needed to be determined. This method demonstrates an approach that eliminates this drawback. The derivation of integral equations of cracks of a new type, the method of their solution and the approach to application in more complex rheologies is given.

Keywords:

lock element, factorization, integral equations, external forms, cracks of a new type

Downloads

Download data is not yet available.
 

References

Литература

1. Griffith A.A. The Phenomena of Rupture and Flow in Solids. Trans. Roy. Soc. A 221, 163-198 (1921). https://doi.org/10.1098/rsta.1921.0006

2. Sator C., Becker W. Closed-form solutions for stress singularities at plane bi- and trimaterial functions. Arch. Appl. Mech. 82, 643-658 (2012). https://doi.org/10.1007/s00419-011-0580-6

3. Irwin G. Fracture Dynamics. In: Fracturing of metals. Ohio, Am. Soc. for Metals, Cleveland, 147-166 (1948).

4. Leblond J.B., Frelat J. Crack kinking from an interface crack with initial contact between the crack lips. Europ. J. Mech. A. Solids 20 (6), 937-951 (2001). https://doi.org/10.1016/S0997-7538(01)01173-1

5. Loboda V.V., Sheveleva A.E. Determing prefracture zones at a crack tip between two elastic orthotropic bodies. Int. Appl. Mech. 39 (5), 566-572 (2003). https://doi.org/10.1023/A:1025139625891

6. Loeber J.F., Sih G.C. Transmission of anti-plane shear waves past an interface crack in dissimilar media. Engineering Fracture Mechanics 5 (3), 699-725 (1973). https://doi.org/10.1016/0013-7944(73)90048-9

7. Menshykov O.V., Menshykov M.V., Guz I.A. 3-D elastodynamic contact problem for an interface crack under harmonic loading. Engineering Fracture Mechanics 80, 52-59 (2012). https://doi.org/10.1016/j.engfracmech.2010.12.010

8. Menshykov O.V., Menshykov M.V., Guz I.A., Mickucka V. 2-D and 3-D contact problems for interface cracks under harmonic loading. In: Constanda C., Harris P. (eds). Integral Methods in Science and Engineering. Boston, Birkh¨auser, 241-252. https://doi.org/10.1007/978-0-8176-8238-5_23

9. Menshykov O.V., Menshykov M.V., Guz I.A. Linear interface crack under plane shear wave. CMES - Computer Modeling in Engineering & Sciences 48 (2), 107-120 (2009). https://doi.org/10.3970/cmes.2009.048.107

10. Menshykov O.V., Menshykov M.V., Guz I.A. Modelling crack closure for an interface crack under harmonic loading. Int. J. of Fracture 165 (1), 127-134 (2010). https://doi.org/10.1007/s10704- 010-9492-7

11. Menshykov O.V., Menshykov M.V., Guz I.A. An iterative BEM for the dynamic analysis of interface crack contact problems. Engineering Analysis with Boundary Elements 35 (5), 735-749 (2011). https://doi.org/10.1016/j.enganabound.2010.12.005

12. Mikhas’kiv V.V., Butrak I.O. Stress concentration around a spheroidal crack caused by a harmonic wave incident at an arbitrary angle. Int. Appl. Mech. 42 (1), 61-66 (2006). https://doi.org/10.1007/s10778-006-0059-2

13. Rice J.R. Elastic fracture mechanics concepts for interfacial cracks. Trans. ASME. J. Appl. Mech. 55 (1), 98-103 (1988). https://doi.org/10.1115/1.3173668

14. Zhang Ch., Gross D. On wave propagation in elastic solids with cracks. South Hampton, UK, Boston, USA, Comp. Mech. Publ. (1998).

15. Морозов Н.Ф. Математические вопросы теории трещин. Москва, Наука (1984).

16. Черепанов Г.П. Механика хрупкого разрушения. Москва, Наука (1974).

17. Kirugulige M.S., Tippur H.V. Mixed-mode dynamic crack growth in functionally graded glassfilled epoxy. Exp. Mech. 46 (2), 269-281 (2006). https://doi.org/10.1007/s11340-006-5863-4

18. Huang Y., Gao H. Intersonic crack propagation - Part II: Suddenly stopping crack. J. Appl. Mech. 69 (1), 76-80 (2002). https://doi.org/10.1115/1.1410936

19. Antipov Y.A., Smirnov A.V. Subsonic propagation of a crack parallel to the boundary of a half-plane. Math. Mech. Solids 18 (2), 153-167 (2013). https://doi.org/10.1177/1081286512462182

20. Sinclair G.B. Stress singularities in classical elasticity - I: Removal, Interpretation, and Analysis. Appl. Mech. Rev. 57 (4), 251-298 (2004). https://doi.org/10.1115/1.1762503

21. Sinclair G.B. tress Singularities in Classical Elasticity - II: Asymptotic Identification. Appl. Mech. Rev. 57 (5), 385-439 (2004). https://doi.org/10.1115/1.1767846

22. Babeshko V.A., Evdokimova O. V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mechanica 229 (5), 2163-2175 (2018). https://doi.org/10.1007/s00707-017-2092-0

23. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of lithospheric plates. Acta Mechanica 229 (11), 4727-4739 (2018). https://doi.org/10.1007/s00707-018-2255-7

24. Бабешко В.А., Бабешко О.М., Евдокимова О.В. Об одном новом типе трещин, дополняющих трещины Гриффитса-Ирвина. Доклады Академии наук 485 (2), 162-165 (2019). https://doi.org/10.31857/S0869-56524852162-165

25. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О влиянии пространственноймо дели литосферных плит на стартовое землетрясение. Доклады Академии наук 480 (2), 158-163 (2018). https://doi.org/10.7868/S0869565218140062

26. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элемен- тов и новыйуниверсальный метод моделирования. Доклады Академии наук 499 (1), 30-35 (2021). https://doi.org/10.31857/S2686740021040039

27. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О стадиях преобразования блочных эле- ментов. Доклады Академии наук 468 (2), 154-158 (2016). https://doi.org/10.7868/S0869565216140085

28. Ворович И.И., Бабешко В.А. Динамические смешанные задачи теории упругости для неклассических областей. Москва, Наука (1979).

29. Нобл Б. Метод Винера-Хопфа. Москва, ИЛ (1962).

References

1. Griffith A.A. The Phenomena of Rupture and Flow in Solids. Trans. Roy. Soc. A 221, 163-198 (1921). https://doi.org/10.1098/rsta.1921.0006

2. Sator C., Becker W. Closed-form solutions for stress singularities at plane bi- and trimaterial functions. Arch. Appl. Mech. 82, 643-658 (2012). https://doi.org/10.1007/s00419-011-0580-6

3. Irwin G. Fracture Dynamics. In: Fracturing of metals. Ohio, Am. Soc. for Metals, Cleveland, 147-166 (1948).

4. Leblond J.B., Frelat J. Crack kinking from an interface crack with initial contact between the crack lips. Europ. J. Mech. A. Solids 20 (6), 937-951 (2001). https://doi.org/10.1016/S0997-7538(01)01173-1

5. Loboda V.V., Sheveleva A.E. Determing prefracture zones at a crack tip between two elastic orthotropic bodies. Int. Appl. Mech. 39 (5), 566-572 (2003). https://doi.org/10.1023/A:1025139625891

6. Loeber J.F., Sih G.C. Transmission of anti-plane shear waves past an interface crack in dissimilar media. Engineering Fracture Mechanics 5 (3), 699-725 (1973). https://doi.org/10.1016/0013-7944(73)90048-9

7. Menshykov O.V., Menshykov M.V., Guz I.A. 3-D elastodynamic contact problem for an interface crack under harmonic loading. Engineering Fracture Mechanics 80, 52-59 (2012). https://doi.org/10.1016/j.engfracmech.2010.12.010

8. Menshykov O.V., Menshykov M.V., Guz I.A., Mickucka V. 2-D and 3-D contact problems for interface cracks under harmonic loading. In: Constanda C., Harris P. (eds). Integral Methods in Science and Engineering. Boston, Birkh¨auser, 241-252. https://doi.org/10.1007/978-0-8176-8238-5_23

9. Menshykov O.V., Menshykov M.V., Guz I.A. Linear interface crack under plane shear wave. CMES - Computer Modeling in Engineering & Sciences 48 (2), 107-120 (2009). https://doi.org/10.3970/cmes.2009.048.107

10. Menshykov O.V., Menshykov M.V., Guz I.A. Modelling crack closure for an interface crack under harmonic loading. Int. J. of Fracture 165 (1), 127-134 (2010). https://doi.org/10.1007/s10704- 010-9492-7

11. Menshykov O.V., Menshykov M.V., Guz I.A. An iterative BEM for the dynamic analysis of interface crack contact problems. Engineering Analysis with Boundary Elements 35 (5), 735-749 (2011). https://doi.org/10.1016/j.enganabound.2010.12.005

12. Mikhas’kiv V.V., Butrak I.O. Stress concentration around a spheroidal crack caused by a harmonic wave incident at an arbitrary angle. Int. Appl. Mech. 42 (1), 61-66 (2006). https://doi.org/10.1007/s10778-006-0059-2

13. Rice J.R. Elastic fracture mechanics concepts for interfacial cracks. Trans. ASME. J. Appl. Mech. 55 (1), 98-103 (1988). https://doi.org/10.1115/1.3173668

14. Zhang Ch., Gross D. On wave propagation in elastic solids with cracks. South Hampton, UK, Boston, USA, Comp. Mech. Publ. (1998).

15. Morozov N.F. Mathematical problems in the theory of cracks. Moscow, Nauka Publ. (1984). (In Russian)

16. Cherepanov G.P. Brittle fracture mechanics. Moscow, Nauka Publ. (1974). (In Russian)

17. Kirugulige M.S., Tippur H.V. Mixed-mode dynamic crack growth in functionally graded glassfilled epoxy. Exp. Mech. 46 (2), 269-281 (2006). https://doi.org/10.1007/s11340-006-5863-4

18. Huang Y., Gao H. Intersonic crack propagation - Part II: Suddenly stopping crack. J. Appl. Mech. 69 (1), 76-80 (2002). https://doi.org/10.1115/1.1410936

19. Antipov Y.A., Smirnov A.V. Subsonic propagation of a crack parallel to the boundary of a half-plane. Math. Mech. Solids 18 (2), 153-167 (2013). https://doi.org/10.1177/1081286512462182

20. Sinclair G.B. Stress singularities in classical elasticity - I: Removal, Interpretation, and Analysis. Appl. Mech. Rev. 57 (4), 251-298 (2004). https://doi.org/10.1115/1.1762503

21. Sinclair G.B. tress Singularities in Classical Elasticity - II: Asymptotic Identification. Appl. Mech. Rev. 57 (5), 385-439 (2004). https://doi.org/10.1115/1.1767846

22. Babeshko V.A., Evdokimova O. V., Babeshko O.M. On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mechanica 229 (5), 2163-2175 (2018). https://doi.org/10.1007/s00707-017-2092-0

23. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On a mechanical approach to the prediction of earthquakes during horizontal motion of lithospheric plates. Acta Mechanica 229 (11), 4727-4739 (2018). https://doi.org/10.1007/s00707-018-2255-7

24. Babeshko V.A., Babeshko O.M., Evdokimova O.V. On one new type of cracks supplementing the Griffith-Irwin cracks. Doklady Akademii nauk 485 (2), 162-165 (2019). https://doi.org/10.31857/S0869-56524852162-165 (In Russian) [Eng. transl.: Dokl. Phys. 64, 102-105 (2019). https://doi.org/10.1134/S1028335819030042].

25. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the influence of the spatial model of lithospheric plates on the starting earthquake. Doklady Akademii nauk 480 (2), 158-163 (2018). https://doi.org/10.7868/S0869565218140062 (In Russian) [Eng. transl.: Dokl. Phys. 63, 203-207 (2018). https://doi.org/10.1134/S102833581805004X].

26. Babeshko V.A., Evdokimova O.V., Babeshko O.M. Fractal properties of block elements and a new universal modeling method. Doklady Akademii nauk 499 (1), 30-35 (2021). https://doi.org/10.31857/S2686740021040039 (In Russian)

27. Babeshko V.A., Evdokimova O.V., Babeshko O.M. On the stages of transformation of block elements. Doklady Akademii nauk 468 (2), 154-158 (2016). https://doi.org/10.7868/S0869565216140085 (In Russian) [Eng. transl.: Dokl. Phys. 61, 227-231 (2016). https://doi.org/10.1134/S1028335816050049].

28. Vorovich I. I., Babeshko V.A. Dynamic mixed problems of elasticity theory for non-classical domains. Moscow, Nauka Publ. (1979). (In Russian)

29. Noble B. Wiener-Hopf method. Moscow, Inostrannaya literatura Publ. (1962).

Published

2022-10-10

How to Cite

Babeshko, V. A., Evdokimova, O. V., & Babeshko, O. M. (2022). On integral equations of cracks of a new type. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 405–416. https://doi.org/10.21638/spbu01.2022.302

Issue

Section

On the anniversary of N.F. Morozov

Most read articles by the same author(s)