Time distribution from zero up to beginning of the final stop of semi-Markov diffusion process on interval with unattainable boundaries

Authors

  • Boris P. Harlamov Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V. O., St Petersburg, 199178, Russian Federation
  • Sofia S. Rasov Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V. O., St Petersburg, 199178, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.312

Abstract

A one-dimensional process with continuous trajectories on non-negative semi-axis is considered. The process has the Markov property with respect to the first exit time from any open interval (semi-Markov process). This process is called to be diffusion if probability for its first exit point from any symmetric neighborhood of its initial point across any boundary tends to 1/2 as length of this neighborhood tends to zero. Time distribution from zero up to beginning of the final interval of constancy is investigated. This distribution depends on semi-Markov transition generating functions of the process. Representation for Laplace transform of this distribution is obtained in an integral form. The integrand of this representation explains sense of quadratic members of Tailor decomposition of a semi-Markov transition generating function by powers of diameter of symmetric neighborhood of the process initial point. Namely trajectory of the process has no any final interval of constancy if and only if coefficient of such a quadratic member is equal to zero.

Keywords:

continuous semi-Markov process, semi-Markov chain, final interval of constancy, differential equation, Laplace transformation, unattainable boundary, integral representation

Downloads

Download data is not yet available.
 

References

Литература

1. Харламов Б.П. Непрерывные полумарковские процессы. Санкт-Петербург, Наука (2001).

2. Harlamov B.P. Continuous semi-Markov processes. London, ISTE, Wiley (2008).

3. Harlamov B.P. Stochastic model of gas capillary chromatography. Communications in Statistics - Simulation and Computation, no. 41, 1023-1031 (2011).

4. Харламов Б.П. Финальное распределение диффузионного процесса с остановкой. Записки научных семинаров ПОМИ, № 431, 209-241 (2014).

5. Дынкин Е.Б. Марковские процессы. Москва, ФМ (1963).

6. Гихман И.И., Скороход А.В. Теория случайных процессов. Т. 2. Москва, Наука (1973).

7. Расова С.С., Харламов Б.П. Об одном локальном свойстве одномерного линейного дифференциального уравнения второго порядка. Дифференциальные уравнения и процессы управления, № 2, 65-79 (2021).

References

1. Harlamov B.P. Continuous semi-Markov processes. St Petersburg, Nauka Publ. (2001). (In Russian)

2. Harlamov B.P. Continuous semi-Markov processes. London, ISTE, Wiley (2008).

3. Harlamov B.P. Stochastic model of gas capillary chromatography. Communications in Statistics - Simulation and Computation, no. 41, 1023-1031 (2011).

4. Harlamov B.P. Final distribution of a diffusion process with stop. Zapiski nauchnykh seminarov POMI, no. 431, 209-241 (2014). (In Russian)

5. Dynkin E.B. Markov processes. Moscow, FM Publ. (1963). (In Russian)

6. Gikhman I.I., Skorokhod A.V. Theory of random processes. Vol. 2. Moscow, Nauka Publ. (1973). (In Russian)

7. Rasova S.S., Harlamov B.P. On one local property of one-dimension linear differential equation of the second order. Differential equations and control processes, no. 2, 65-79 (2021). (In Russian)

Published

2022-10-10

How to Cite

Harlamov, B. P., & Rasov, S. S. (2022). Time distribution from zero up to beginning of the final stop of semi-Markov diffusion process on interval with unattainable boundaries. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 517–526. https://doi.org/10.21638/spbu01.2022.312

Issue

Section

Mathematics