Gravitational instability of gas-dust circumnuclear disks in nearby galaxies

Authors

  • Roman V. Tkachenko Institute of Physics, Southern Federal University, 194, pr. Stachki, Rostov-on-Don, 344090, Russian Federation
  • Vladimir I. Korchagin Institute of Physics, Southern Federal University, 194, pr. Stachki, Rostov-on-Don, 344090, Russian Federation
  • Boris B. Jmailov Institute of High Technologies and Piezotechnics, Southern Federal University, 10, ul. Milchakova, Rostov-on-Don, 344090, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.316

Abstract

Using the two-dimensional multi-component hydrodynamical simulations, we study the effect of dust on the development of instability in the gas-dust mini-disks observed in the central regions of galaxies. The dust is coupled with the gas gravitationally and by means of a friction force depending on the velocity difference between the two components. The presence of dust leads to the instability of a mini-disk and the development of a spiral structure observed in the gas-dust mini-disks. The spiral structure is multi-armed, which is caused by a dominance of the high order Fourier harmonics in the unstable modes. The instability of gas-dust circumnuclear disks is an important mechanism for explaining the activity of galactic nuclei associated with the accretion of matter onto a central black hole. We find that the admixture of dust with a dust-to-gas ratio of 10-20 % significantly destabilizes the gas-dust disk.

Keywords:

circumnuclear disks, numerical simulations, computational hydrodynamics, galactic centres

Downloads

Download data is not yet available.
 

References

Литература

1. Noh H., Vishniac E.T., Cochran W.D. An examination of the M = 1 instability in a low-mass protoplanetary disk. The Astrophysical Journal 397, 347 (1992). https://doi.org/10.1086/171790

2. Terrazas B.A., Bell E.F., Woo J., Henriques B.M. Supermassive black holes as the regulators of star formation in central galaxies. The Astrophysical Journal 844 (2), 170 (2017). https://doi.org/10.3847/1538-4357/aa7d07

3. Shioya Y., Tosaki T., Ohyama Y., Murayama T., Yamada T., Ishizuki S., Taniguchi Y. Molecular gas in the poststarburst galactic nucleus of NGC 4736. Publications of the Astronomical Society of Japan 50 (3), 317-323 (1998). https://doi.org/10.1093/pasj/50.3.317

4. Gerin M., Casoli F., Combes F. Molecular gas in the RSAB galaxy NGC 4736. Astronomy and Astrophysics 251, 32-42 (1991).

5. Wada K., Fukushige R., Izumi T., Tomisaka K. Circumnuclear Multiphase Gas in the Circinus Galaxy. I. Non-LTE Calculations of CO Lines. The Astrophysical Journal 852 (2), 88 (2018). https://doi.org/10.3847/1538-4357/aa9e53

6. Martini P., Regan M.W., Mulchaey J.S., Pogge R.W. Circumnuclear dust in nearby active and inactive galaxies. II. Bars, nuclear spirals, and the fueling of active galactic nuclei. The Astrophysical Journal 589 (2), 774 (2003). https://doi.org/10.1086/374685

7. Mu˜noz-Mateos J.C., De Paz A.G., Boissier S., Zamorano J., Dale D.A., P´erez-Gonz´alez P.G., Kennicutt Jr.R.C. Radial distribution of stars, gas, and dust in sings galaxies. II. Derived dust properties. The Astrophysical Journal 701 (2), 1965 (2009). https://doi.org/10.1088/0004-637X/701/2/1965

8. Mu˜noz-Mateos J.C., Boissier S., De Paz A.G., Zamorano J., Kennicutt Jr.R.C., Moustakas J., Gallego J. Radial distribution of stars, gas, and dust in sings galaxies. III. Modeling the evolution of the stellar component in galaxy disks. The Astrophysical Journal 731 (1), 10 (2011). https://doi.org/10.1088/0004-637X/731/1/10

9. Van der Laan T.P.R., Armus L., Beirao P., Sandstrom K., Groves B., Schinnerer E., Kennicutt R.C. Heating and cooling of the neutral ISM in the NGC 4736 circumnuclear ring. Astronomy & Astrophysics 575, A83 (2015). https://doi.org/10.1051/0004-6361/201425402

10. Patra N.N. Theoretical modelling of two-component molecular discs in spiral galaxies. Astronomy & Astrophysics 638, A66 (2020). https://doi.org/10.1051/0004-6361/201936483

11. Stone J.M., Mihalas D., Norman M.L. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. III-The radiation hydrodynamic algorithms and tests. The Astrophysical Journal Supplement Series 80, 819 (1992). https://doi.org/10.1086/191682

12. Stoyanovskaya O.P., Snytnikov V.N., Vorobyov E.I. Analysis of Methods for Computing the Trajectories of Dust Particles in a Gas - Dust Circumstellar Disk. The Astrophysical Journal Supplement Series 61 (12), 1044 (2017). https://doi.org/10.1134/S1063772917120071

13. Maiolino R., Marconi A., Oliva E. Dust in active nuclei - II. Powder or gravel? Astronomy & Astrophysics 365 (2), 37-48 (2001). https://doi.org/10.1051/0004-6361:20000012

14. Maiolino R., Marconi A., Salvati M., Risaliti G., Severgnini P., Oliva E., Vanzi L. Dust in active nuclei. I. Evidence for “anomalous” properties. Astronomy & Astrophysics 365 (2), 28-36 (2001). https://doi.org/10.1051/0004-6361:20000177

15. Kennicutt Jr.R.C. The star formation law in galactic disks. Astronomy & Astrophysics 344, 685 (1989). https://doi.org/10.1086/167834

16. Elmegreen D.M., Elmegreen B.G., Eberwein K.S. Dusty acoustic turbulence in the nuclear disks of two liner galaxies ngc 4450 and ngc 4736. The Astrophysical Journal 564 (1), 234 (2002). https://doi.org/10.1086/324150

17. Kim W.T., Elmegreen B.G. Nuclear spiral shocks and induced gas inflows in weak oval potentials. The Astrophysical Journal Letters 841 (1), L4 (2017). https://doi.org/10.3847/2041-8213/aa70a1

References

1. Noh H., Vishniac E.T., Cochran W.D. An examination of the M = 1 instability in a low-mass protoplanetary disk. The Astrophysical Journal 397, 347 (1992). https://doi.org/10.1086/171790

2. Terrazas B.A., Bell E.F., Woo J., Henriques B.M. Supermassive black holes as the regulators of star formation in central galaxies. The Astrophysical Journal 844 (2), 170 (2017). https://doi.org/10.3847/1538-4357/aa7d07

3. Shioya Y., Tosaki T., Ohyama Y., Murayama T., Yamada T., Ishizuki S., Taniguchi Y. Molecular gas in the poststarburst galactic nucleus of NGC 4736. Publications of the Astronomical Society of Japan 50 (3), 317-323 (1998). https://doi.org/10.1093/pasj/50.3.317

4. Gerin M., Casoli F., Combes F. Molecular gas in the RSAB galaxy NGC 4736. Astronomy and Astrophysics 251, 32-42 (1991).

5. Wada K., Fukushige R., Izumi T., Tomisaka K. Circumnuclear Multiphase Gas in the Circinus Galaxy. I. Non-LTE Calculations of CO Lines. The Astrophysical Journal 852 (2), 88 (2018). https://doi.org/10.3847/1538-4357/aa9e53

6. Martini P., Regan M.W., Mulchaey J.S., Pogge R.W. Circumnuclear dust in nearby active and inactive galaxies. II. Bars, nuclear spirals, and the fueling of active galactic nuclei. The Astrophysical Journal 589 (2), 774 (2003). https://doi.org/10.1086/374685

7. Mu˜noz-Mateos J.C., De Paz A.G., Boissier S., Zamorano J., Dale D.A., P´erez-Gonz´alez P.G., Kennicutt Jr.R.C. Radial distribution of stars, gas, and dust in sings galaxies. II. Derived dust properties. The Astrophysical Journal 701 (2), 1965 (2009). https://doi.org/10.1088/0004-637X/701/2/1965

8. Mu˜noz-Mateos J.C., Boissier S., De Paz A.G., Zamorano J., Kennicutt Jr.R.C., Moustakas J., Gallego J. Radial distribution of stars, gas, and dust in sings galaxies. III. Modeling the evolution of the stellar component in galaxy disks. The Astrophysical Journal 731 (1), 10 (2011). https://doi.org/10.1088/0004-637X/731/1/10

9. Van der Laan T.P.R., Armus L., Beirao P., Sandstrom K., Groves B., Schinnerer E., Kennicutt R.C. Heating and cooling of the neutral ISM in the NGC 4736 circumnuclear ring. Astronomy & Astrophysics 575, A83 (2015). https://doi.org/10.1051/0004-6361/201425402

10. Patra N.N. Theoretical modelling of two-component molecular discs in spiral galaxies. Astronomy & Astrophysics 638, A66 (2020). https://doi.org/10.1051/0004-6361/201936483

11. Stone J.M., Mihalas D., Norman M.L. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. III-The radiation hydrodynamic algorithms and tests. The Astrophysical Journal Supplement Series 80, 819 (1992). https://doi.org/10.1086/191682

12. Stoyanovskaya O.P., Snytnikov V.N., Vorobyov E.I. Analysis of Methods for Computing the Trajectories of Dust Particles in a Gas - Dust Circumstellar Disk. The Astrophysical Journal Supplement Series 61 (12), 1044 (2017). https://doi.org/10.1134/S1063772917120071

13. Maiolino R., Marconi A., Oliva E. Dust in active nuclei - II. Powder or gravel? Astronomy & Astrophysics 365 (2), 37-48 (2001). https://doi.org/10.1051/0004-6361:20000012

14. Maiolino R., Marconi A., Salvati M., Risaliti G., Severgnini P., Oliva E., Vanzi L. Dust in active nuclei. I. Evidence for “anomalous” properties. Astronomy & Astrophysics 365 (2), 28-36 (2001). https://doi.org/10.1051/0004-6361:20000177

15. Kennicutt Jr.R.C. The star formation law in galactic disks. Astronomy & Astrophysics 344, 685 (1989). https://doi.org/10.1086/167834

16. Elmegreen D.M., Elmegreen B.G., Eberwein K.S. Dusty acoustic turbulence in the nuclear disks of two liner galaxies ngc 4450 and ngc 4736. The Astrophysical Journal 564 (1), 234 (2002). https://doi.org/10.1086/324150

17. Kim W.T., Elmegreen B.G. Nuclear spiral shocks and induced gas inflows in weak oval potentials. The Astrophysical Journal Letters 841 (1), L4 (2017). https://doi.org/10.3847/2041-8213/aa70a1

Published

2022-10-10

How to Cite

Tkachenko, R. V., Korchagin, V. I., & Jmailov, B. B. (2022). Gravitational instability of gas-dust circumnuclear disks in nearby galaxies. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(3), 561–571. https://doi.org/10.21638/spbu01.2022.316

Issue

Section

Astronomy