Algebra of fuzzy numbers with unimodal membership function

Authors

  • Ilya V. Germashev Volgograd State University, 100, pr. Universitetskiy, Volgograd, 400062, Russian Federation
  • Evgeniya V. Derbisher Volgograd State Technical University, 28, pr. im. Lenina, Volgograd, 400005, Russian Federation
  • Vyacheslav E. Derbisher Volgograd State Technical University, 28, pr. im. Lenina, Volgograd, 400005, Russian Federation
  • Anna V. Kartashova Volgograd State Socio-Pedagogical University, 27, pr. im. Lenina, Volgograd, 400005, Russian Federation
  • Alexander V. Titov Volgograd State University, 100, pr. Universitetskiy, Volgograd, 400062, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.402

Abstract

Fuzzy numbers with a unimodal membership function are presented, which have found application in the fuzzy analysis of such subject fields as ecology, chemical technology. In this article, a set of fuzzy numbers with an unimodal membership function of a special type is considered. Two binary operations (addition and multiplication) are given over this set, formulas for calculation are obtained and some properties of this algebra are investigated. It is proved that addition and multiplication are commutative and associative. Moreover, multiplication is distributive over addition. It is shown that there are no neutral and inverse elements over both operations. Note that if we add neutral elements under addition and multiplication to the given algebra, we will obtain a commutative semiring. The conditions under which quasineutral or quasiinverse elements exist are also given.

Keywords:

algebra, fuzzy numbers, arithmetic operations, associativity, distributivity

Downloads

Download data is not yet available.
 

References

Литература

1. Germashev I.V., Derbisher V.E. Fuzzy optimization of polymer compositions. Theor. Found. of Chem. Eng. 35 (4), 418-421 (2001). https://doi.org/10.1023/A:1010443607682

2. Гермашев И.В., Клинкова Г.Ю. Математические методы втехнике и технологиях: Сб. трудов27-й междунар. конф., Тамбов, 3-5 июня 2014 г. В 12 т. Т. 7, 5-7 (2014).

3. Гермашев И.В., Дербишер Е.В., Дербишер В.Е., Куликова Н.Ю. Сходимость рядов нечетких чисел с унимодальнойфункциейпринадлежности. Математическая физика и компьютерное моделирование 21 (1), 11-17 (2018). https://doi.org/10.15688/mpcm.jvolsu.2018.1.2

4. Dubois D., Prade H. Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (6), 613-626 (1978). https://doi.org/10.1080/00207727808941724

5. Filev D.P., Yager R.R. Operations on fuzzy numbers via fuzzy reasoning. Fuzzy Sets and Syst. 91 (2), 137-142 (1997). https://doi.org/10.1016/S0165-0114(97)00135-8

6. Alim A., Johora F.T., Babu S., Sultana A. Elementary operations on L-R fuzzy number. Adv. in Pure Math. 5 (3), 131-136 (2015). https://doi.org/10.4236/apm.2015.53016

7. Wagenknecht M., Hampel R., Schneider V. Computational aspects of fuzzy arithmetics based on archimedean t-norms. Fuzzy Sets and Syst. 123 (1), 49-62 (2001). https://doi.org/10.4236 /apm.2015.53016 (In Russian)

8. Guerra M.L., Stefanini L. Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets and Syst. 150 (1), 5-33 (2005). https://doi.org/10.1016/j.fss.2004.06.007

9. Koroteev M.V., Terelyanskii P.V., Ivanyuk V.A. Arithmetic of fuzzy numbers in generalized trapezoidal form. J. of Math. Sci. 216 (5), 696-701 (2016). https://doi.org/10.1007/s10958-016-2931-x

10. Golan J.S. Semirings and their applications. Dordrecht, Kluwer Academic (1999).

11. Vechtomov E.M., Petrov A.A. Multiplicatively idempotent semirings. Fundam. and Appl. Math. 18 (4), 41-70 (2013). (In Russian)

12. Vrba J. A note on inverses in arithmetic with fuzzy numbers. Fuzzy Sets and Syst. 50 (3), 267-278 (1992). https://doi.org/10.1016/0165-0114(92)90225-S

13. Васильев Ф.П. Численные методы решения экстремальных задач. Москва, Наука (1988).

14. Germashev I.V., Derbisher V.E. Properties of unimodal membership functions in operations with fuzzy sets. Russ. Math. 51 (3), 73-76 (2007). https://doi.org/10.3103/s1066369x07030115

References

1. Germashev I.V., Derbisher V.E. Fuzzy optimization of polymer compositions. Theor. Found. of Chem. Eng. 35 (4), 418-421 (2001). https://doi.org/10.1023/A:1010443607682

2. Germashev I.V., Klinkova G.Y. The model for estimating the successional age of a reservoir ecosystem. Mathematical methods in Engineering and Technology: Proceedings of the 27th International Conference, Tambov, June 3-5, 2014. In 12 vols, vol. 7, 5-7 (2014). (In Russian)

3. Germashev I.V., Derbisher E.V., Derbisher V.E., Kulikova N.Y. Convergence of series of fuzzy numbers with unimodal membership function. Mathematical Physics and Computer Simulation 21 (1), 11-17 (2018). https://doi.org/10.15688/mpcm.jvolsu.2018.1.2 (In Russian)

4. Dubois D., Prade H. Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (6), 613-626 (1978). https://doi.org/10.1080/00207727808941724

5. Filev D.P., Yager R.R. Operations on fuzzy numbers via fuzzy reasoning. Fuzzy Sets and Syst. 91 (2), 137-142 (1997). https://doi.org/10.1016/S0165-0114(97)00135-8

6. Alim A., Johora F.T., Babu S., Sultana A. Elementary operations on L-R fuzzy number. Adv. in Pure Math. 5 (3), 131-136 (2015). https://doi.org/10.4236/apm.2015.53016

7. Wagenknecht M., Hampel R., Schneider V. Computational aspects of fuzzy arithmetics based on archimedean t-norms. Fuzzy Sets and Syst. 123 (1), 49-62 (2001). https://doi.org/10.4236 /apm.2015.53016 (In Russian)

8. Guerra M.L., Stefanini L. Approximate fuzzy arithmetic operations using monotonic interpolations. Fuzzy Sets and Syst. 150 (1), 5-33 (2005). https://doi.org/10.1016/j.fss.2004.06.007

9. Koroteev M.V., Terelyanskii P.V., Ivanyuk V.A. Arithmetic of fuzzy numbers in generalized trapezoidal form. J. of Math. Sci. 216 (5), 696-701 (2016). https://doi.org/10.1007/s10958-016-2931-x

10. Golan J.S. Semirings and their applications. Dordrecht, Kluwer Academic (1999).

11. Vechtomov E.M., Petrov A.A. Multiplicatively idempotent semirings. Fundam. and Appl. Math. 18 (4), 41-70 (2013). (In Russian)

12. Vrba J. A note on inverses in arithmetic with fuzzy numbers. Fuzzy Sets and Syst. 50 (3), 267-278 (1992). https://doi.org/10.1016/0165-0114(92)90225-S

13. Vasilyev F.P. Numerical methods for solving extreme problems. Moscow, Nauka Publ. (1988). (In Russian)

14. Germashev I.V., Derbisher V.E. Properties of unimodal membership functions in operations with fuzzy sets. Russ. Math. 51 (3), 73-76 (2007). https://doi.org/10.3103/s1066369x07030115

Published

2022-12-26

How to Cite

Germashev, I. V., Derbisher, E. V., Derbisher, V. E., Kartashova, A. V., & Titov, A. V. (2022). Algebra of fuzzy numbers with unimodal membership function. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(4), 590–601. https://doi.org/10.21638/spbu01.2022.402

Issue

Section

Mathematics