Natural vibrations of composite cylindrical shells partially filled with fluid

Authors

  • Sergey A. Bochkarev Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, 1, ul. Ak. Koroleva, Perm, 614068, Russian Federation
  • Sergey V. Lekomtsev Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, 1, ul. Ak. Koroleva, Perm, 614068, Russian Federation
  • Valerii P. Matveenko Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences, 1, ul. Ak. Koroleva, Perm, 614068, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2023.403

Abstract

The article presents the results of studies of natural vibrations of circular vertical multilayer cylindrical shells completely or partially filled with a stationary compressible fluid and subjected to hydrostatic load. The behavior of the elastic structure and the fluid medium is described using the classical shell theory and the Euler equations. The effects of sloshing on the free surface of the fluid are not considered. The linearized equations of motion for shells together with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations with respect to new unknowns. The acoustic wave equation is transformed to a system of differential equations using the generalized differential quadrature method. The formulated boundary value problem is solved by Godunov’s method of orthogonal sweep. The natural frequencies of vibrations are calculated based on the combination of a stepwise procedure and subsequent refinement by the method of dividing in half. The reliability of the obtained results is verified by comparison with the known numerical solutions. The dependence of low vibration frequencies on the reinforcing angle and the level of the structure filling with a fluid for simply supported rigidly clamped and cantilevered two-layer and three-layer cylindrical shells with a fluid are analyzed in detail. It is demonstrated that the possibility of changing the frequencies and vibration modes through a suitable choice of the layer arrangement scheme and the reinforcing angle of the composite material is notably determined by a prescribed combination of boundary conditions for an elastic body.

Keywords:

classical shell theory, compressible fluid, layered material, hydrostatic pressure, Godunov’s orthogonal sweep method, generalized differential quadrature method, natural vibrations

Downloads

Download data is not yet available.
 

References

Литература

1. Qatu M. S., Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000-2009. Compos. Struct. 93 (1), 14-31 (2010). https://doi.org/10.1016/j.compstruct.2010.05.014

2. Qatu M., Asadi E., Wang W. Review of recent literature on static analyses of composite shells: 2000-2010. Open J. Compos. Mater. 2 (3), 61-86 (2012). https://doi.org/10.4236/ojcm.2012.23009

3. Muggeridge D.B., Buckley T. J. Flexural vibration of orthotropic cylindrical shells in a fluid medium. AIAA J. 17 (9), 1019-1022 (1979). https://doi.org/10.2514/3.61270

4. Nurul Izyan M.D., Aziz Z.A., Viswanathan K.K. Free vibration of anti-symmetric angle-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Compos. Struct. 193, 189-197 (2018). https://doi.org/10.1016/j.compstruct.2018.03.034

5. Nurul Izyan M.D., Aziz Z.A., Ghostine R., Lee J.H., Viswanathan K.K. Free vibration of crossply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Int. J. Press. Vessel. Pip. 170, 73-81 (2019). https://doi.org/10.1016/j.ijpvp.2019.01.019

6. Nurul Izyan M. D., Viswanathan K. K. Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid. PLoS ONE 14 (7), e0219089 (2019). https://doi.org/10.1371/journal.pone.0219089

7. Xi Z. C., Yam L.H., Leung T.P. Free vibration of a laminated composite circular cylindrical shell partially filled with fluid. Compos. B Eng. 28 (4), 359-374 (1997). https://doi.org/10.1016/S1359-8368(96)00047-9

8. Xi Z. C., Yam L.H., Leung T.P. Free vibration of a partially fluid-filled cross-ply laminated composite circular cylindrical shell. J. Acoust. Soc. Am. 101 (2), 909-917 (1997). https://doi.org/10.1121/1.418049

9. Okazaki K., Tani J., Sugano M. Free vibrations of a laminated composite coaxial circular cylindrical shell partially filled with liquid. Trans. Jpn. Soc. Mech. Eng. C. 68 (671), 1942-1949 (2002). https://doi.org/10.1299/kikaic.68.1942

10. Okazaki K., Tani J., Qiu J., Kosugo K. Vibration test of a cross-ply laminated composite circular cylindrical shell partially filled with liquid. Trans. Jpn. Soc. Mech. Eng. C. 73 (727), 724-731 (2007). https://doi.org/10.1299/kikaic.73.724

11. Bochkarev S. A., Lekomtsev S. V. Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells. Struct. Eng. Mech. 81 (6), 769-780 (2022). https://doi.org/10.12989/sem.2022.81.6.769

12. Toorani M.H., Lakis A.A. Shear deformation in dynamic analysis of anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid. Comput. Methods Appl. Mech. Eng. 190 (37), 4929-4966 (2001). https://doi.org/10.1016/S0045-7825(00)00357-1

13. Toorani M.H., Lakis A.A. Dynamic analysis of anisotropic cylindrical shells containing flowing fluid. J. Press. Vessel Technol. 123 (4), 454-460 (2001). https://doi.org/10.1115/1.1401023

14. Toorani M.H., Lakis A.A. Dynamics behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid. J. Sound Vib. 259 (2), 265-298 (2003). https://doi.org/10.1006/jsvi.2002.5161

15. Firouz-Abadi R.D., Haddadpour H., Kouchakzadeh M.A. Free vibrations of composite tanks partially filled with fluid. Thin-Walled Struct. 47 (12), 1567-1574 (2009). https://doi.org/10.1016/j.tws.2009.05.007

16. Yao S., Zhang Y., Xue J., Jin F., He Z. Free vibration of non-shallow, laminated cylinders submerged in a fluid with general boundary conditions. Appl. Ocean Res. 125, 103232 (2022). https://doi.org/10.1016/j.apor.2022.103232

17. Thinh T. I., Nguyen M.C. Dynamic stiffness method for free vibration of composite cylindrical shells containing fluid. Appl. Math. Model. 40 (21-22), 9286-9301 (2016). https://doi.org/10.1016/j.apm.2016.06.015

18. Hien V.Q., Thinh T. I., Cuong N.M. Free vibration analysis of joined composite conical-cylindrical-conical shells containing fluid. Vietnam J. Mech. 38, 249-265 (2016). https://doi.org/10.15625/0866-7136/6954

19. Zhu H.-Z., Wu J.-H. Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method. Acta Mech. 231 (9), 3961-3978 (2020). https://doi.org/10.1007/s00707-020-02734-3

20. Григолюк Э.И.,Шклярчук Ф.Н. Уравнения возмущенного движения тела с тонкостенной упругойоболочк ой, частично заполненной жидкостью. ПММ 34 (3), 401-411 (1970).

21. Bochkarev S. A., Lekomtsev S. V., Senin A. N. Natural vibrations and stability of loaded cylindrical shells partially filled with fluid, taking into account gravitational effects. Thin-Walled Struct. 164, 107867 (2021). https://doi.org/10.1016/j.tws.2021.107867

22. Горшков А. Г., Морозов В.И., Пономарев А.Т., Шклярчук Ф.Н. Аэрогидроупругость конструкций. Москва, Физматлит (2000).

23. Годунов С.К. Обыкновенные дифференциальные уравнения с постоянными коэффициентами. Т.I: Краевые задачи. Новосибирск, НГУ (1994).

24. Бочкарев С.А., Лекомцев С.В., Матвеенко В.П. Собственные колебания усеченных конических оболочек, содержащих жидкость. ПММ 86 (4), 505-526 (2022). https://doi.org/10.31857/S0032823522040038

25. Sheinman I., Greif S. Dynamic analysis of laminated shells of revolution. J. Compos. Mater. 18 (3), 200-215 (1984). https://doi.org/10.1177/002199838401800301

26. Кармишин А.В., Лясковец В.А., Мяченков В.И., Фролов А.Н. Статика и динамика тонкостенных оболочечных конструкций. Москва, Машиностроение (1975).

27. Алфутов Н.А., Зиновьев П.А., Попов В. Г. Расчет многослойных пластин и оболочек из композиционных материалов. Москва, Машиностроение (1984).

28. Shu C. Differential quadrature and its application in engineering. London, Springer-Verlag (2000).

29. Bochkarev S. A., Lekomtsev S. V. Stability analysis of composite cylindrical shell containing rotating fluid. IOP J. Phys.: Conf. Ser. 1945, 012034 (2021). https://doi.org/10.1088/1742-6596/1945/1/012034

References

1. Qatu M. S., Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000-2009. Compos. Struct. 93 (1), 14-31 (2010). https://doi.org/10.1016/j.compstruct.2010.05.014

2. Qatu M., Asadi E., Wang W. Review of recent literature on static analyses of composite shells: 2000-2010. Open J. Compos. Mater. 2 (3), 61-86 (2012). https://doi.org/10.4236/ojcm.2012.23009

3. Muggeridge D.B., Buckley T. J. Flexural vibration of orthotropic cylindrical shells in a fluid medium. AIAA J. 17 (9), 1019-1022 (1979). https://doi.org/10.2514/3.61270

4. Nurul Izyan M.D., Aziz Z.A., Viswanathan K.K. Free vibration of anti-symmetric angle-ply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Compos. Struct. 193, 189-197 (2018). https://doi.org/10.1016/j.compstruct.2018.03.034

5. Nurul Izyan M.D., Aziz Z.A., Ghostine R., Lee J.H., Viswanathan K.K. Free vibration of crossply layered circular cylindrical shells filled with quiescent fluid under first order shear deformation theory. Int. J. Press. Vessel. Pip. 170, 73-81 (2019). https://doi.org/10.1016/j.ijpvp.2019.01.019

6. Nurul Izyan M. D., Viswanathan K. K. Vibration of symmetrically layered angle-ply cylindrical shells filled with fluid. PLoS ONE 14 (7), e0219089 (2019). https://doi.org/10.1371/journal.pone.0219089

7. Xi Z. C., Yam L.H., Leung T.P. Free vibration of a laminated composite circular cylindrical shell partially filled with fluid. Compos. B Eng. 28 (4), 359-374 (1997). https://doi.org/10.1016/S1359-8368(96)00047-9

8. Xi Z. C., Yam L.H., Leung T.P. Free vibration of a partially fluid-filled cross-ply laminated composite circular cylindrical shell. J. Acoust. Soc. Am. 101 (2), 909-917 (1997). https://doi.org/10.1121/1.418049

9. Okazaki K., Tani J., Sugano M. Free vibrations of a laminated composite coaxial circular cylindrical shell partially filled with liquid. Trans. Jpn. Soc. Mech. Eng. C. 68 (671), 1942-1949 (2002). https://doi.org/10.1299/kikaic.68.1942

10. Okazaki K., Tani J., Qiu J., Kosugo K. Vibration test of a cross-ply laminated composite circular cylindrical shell partially filled with liquid. Trans. Jpn. Soc. Mech. Eng. C. 73 (727), 724-731 (2007). https://doi.org/10.1299/kikaic.73.724

11. Bochkarev S. A., Lekomtsev S. V. Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells. Struct. Eng. Mech. 81 (6), 769-780 (2022). https://doi.org/10.12989/sem.2022.81.6.769

12. Toorani M.H., Lakis A.A. Shear deformation in dynamic analysis of anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid. Comput. Methods Appl. Mech. Eng. 190 (37), 4929-4966 (2001). https://doi.org/10.1016/S0045-7825(00)00357-1

13. Toorani M.H., Lakis A.A. Dynamic analysis of anisotropic cylindrical shells containing flowing fluid. J. Press. Vessel Technol. 123 (4), 454-460 (2001). https://doi.org/10.1115/1.1401023

14. Toorani M.H., Lakis A.A. Dynamics behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid. J. Sound Vib. 259 (2), 265-298 (2003). https://doi.org/10.1006/jsvi.2002.5161

15. Firouz-Abadi R.D., Haddadpour H., Kouchakzadeh M.A. Free vibrations of composite tanks partially filled with fluid. Thin-Walled Struct. 47 (12), 1567-1574 (2009). https://doi.org/10.1016/j.tws.2009.05.007

16. Yao S., Zhang Y., Xue J., Jin F., He Z. Free vibration of non-shallow, laminated cylinders submerged in a fluid with general boundary conditions. Appl. Ocean Res. 125, 103232 (2022). https://doi.org/10.1016/j.apor.2022.103232

17. Thinh T. I., Nguyen M.C. Dynamic stiffness method for free vibration of composite cylindrical shells containing fluid. Appl. Math. Model. 40 (21-22), 9286-9301 (2016). https://doi.org/10.1016/j.apm.2016.06.015

18. Hien V.Q., Thinh T. I., Cuong N.M. Free vibration analysis of joined composite conical-cylindrical-conical shells containing fluid. Vietnam J. Mech. 38, 249-265 (2016). https://doi.org/10.15625/0866-7136/6954

19. Zhu H.-Z., Wu J.-H. Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method. Acta Mech. 231 (9), 3961-3978 (2020). https://doi.org/10.1007/s00707-020-02734-3

20. Grigolyuk E. I., Shklyarchuk F.N. Equations of perturbed motion of a body with a thin walled elastic shell partially filled with a liquid. J. Appl. Math. Mech. 34 (3), 379-389 (1970). https://doi.org/10.1016/0021-8928(70)90084-5 (In Russian)

21. Bochkarev S. A., Lekomtsev S. V., Senin A. N. Natural vibrations and stability of loaded cylindrical shells partially filled with fluid, taking into account gravitational effects. Thin-Walled Struct. 164, 107867 (2021). https://doi.org/10.1016/j.tws.2021.107867

22. Gorshkov A.G., Morozov V. I., Ponomarev V. I., Shklyarchuk F. N. Aerohydroelasticity of Structures. Moscow, Fizmatlit Publ. (2000). (In Russian)

23. Godunov S.K. Obyknovennye differentsial’nye uravneniia s postoiannymi koeffitsientami. Vol. I. Kraevye zadachi. Novosibirsk University Publ. (1994). (In Russian) [Engl. trans.: Godunov S.K. Ordinary differential equations with constant coefficients. Providence. American Mathematical Society (1997)].

24. Bochkarev S.A., Lekomtsev S.V., Matveenko V. P. Natural vibrations of truncated conical shells containing fluid. Mech. Solids 86 (4), 505-526 (2022). https://doi.org/10.31857/S0032823522040038 (In Russian) [Eng. transl.: Mech. Solids 57 (8), 1971-1986 (2022). https://doi.org/10.3103/S0025654422080064].

25. Sheinman I., Greif S. Dynamic analysis of laminated shells of revolution. J. Compos. Mater. 18 (3), 200-215 (1984). https://doi.org/10.1177/002199838401800301

26. Karmishin A.V., Lyaskovets V.A., Myachenkov V. I., Frolov A.N. The statics and dynamics of thin-walled shell structures. Moscow, Mashinostroyeniye (1975). (In Russian)

27. Alfutov N. A., Zinov’ev P.A., Popov B.G. Analysis of multilayer plates and shells of composite materials. Moscow, Mashinostroyeniye (1984). (In Russian)

28. Shu C. Differential quadrature and its application in engineering. London, Springer-Verlag (2000).

29. Bochkarev S. A., Lekomtsev S. V. Stability analysis of composite cylindrical shell containing rotating fluid. IOP J. Phys.: Conf. Ser. 1945, 012034 (2021). https://doi.org/10.1088/1742-6596/1945/1/012034

Published

2023-12-23

How to Cite

Bochkarev, S. A., Lekomtsev, S. V., & Matveenko, V. P. (2023). Natural vibrations of composite cylindrical shells partially filled with fluid. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 10(4), 616–631. https://doi.org/10.21638/spbu01.2023.403

Issue

Section

On the anniversary of A. K. Belyaev