On a generalization of self-injective rings

Authors

DOI:

https://doi.org/10.21638/11701/spbu01.2020.106

Abstract

In this work the notion of left (right) self-injective ring is generalized. We consider rings that are direct sum of injective module and semisimple module as a left (respectively, right) module above itself. We call such rings left (right) semi-injective and research their properties with the help of two-sided Peirce decomposition of the ring. The paper contains the description of left Noetherian left semi-injective rings. It is proved that any such ring is a direct product of (two-sided) self-injective ring and several quotient rings (of special kind) of rings of upper-triangular matrices over skew fields. From this description it follows that for left semi-injective rings we have the analogue of the classical result for self-injective rings. Namely, if a ring is left Noetherian and left semi-injective then this ring is also right semi-injective and two-sided Artinian.

Keywords:

injective module, semisimple module, self-injective ring, Peirce decomposition

Downloads

Download data is not yet available.
 

References

Литература

Hazewinkel M., Gubareni N., Kirichenko V. V. Algebras, rings and modules. Vol. 2. In: Mathematics and Its Applications. Springer, 2007.

Туганбаев А. А. Теория колец. Арифметические модули и кольца. МЦНМО, 2009.

Крылов П. А., Туганбаев А. А. Модули над кольцами формальных матриц // Фундаментальная и прикладная математика. 2009. Т. 15. Вып. 8. С. 145–211.

Anderson F., Fuller K. Rings and categories of modules. Springer-Verlag, 1992.

References

Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, rings and modules 2, in: Mathematics and Its Applications (Springer, 2007).

Tuganbaev A. A., Theory of rings. Arithmetical modules and rings (MCNMO Publ., 2009). (In Russian)

Krylov P. A., Tuganbaev A. A., “Modules over formal matrix rings”, Fundamentalnaya i prikladnaya matematika 15(8), 145–211 (2009). (In Russian)

Anderson F., Fuller K., Rings and categories of modules (Springer-Verlag, 1992).

Published

2020-05-13

How to Cite

Zilberbord, I. M., & Sotnikov, S. V. (2020). On a generalization of self-injective rings. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(1), 60–68. https://doi.org/10.21638/11701/spbu01.2020.106

Issue

Section

Mathematics