New studies of paradox of strength and ductility in nanomaterials

Authors

DOI:

https://doi.org/10.21638/11701/spbu01.2020.112

Abstract

Crystalline materials can be superstrong or ductile, but they rarely exhibit both of these properties at the same time. This is due to the physical nature of their plastic deformation, which is determined by the mobility of dislocations — linear defects of the crystal lattice — in the grain/crystallite interior. This is also true for nanostructured materials with very small grain sizes in the nanometric range. At the same time, in recent years, a number of original approaches have been developed and proposed to achieve high strength and ductility of nanomaterials, particularly, processed by severe plastic deformation (SPD) techniques. The paper below presents a brief overview of these approaches as well as their
physico-mechanical principles put forward as of today.

Keywords:

nanostructured materials, paradox of strength and ductility, severe plastic deformation, deformation mechanisms

Downloads

Download data is not yet available.
 

References

Литература

Штремель М. А. Прочность сплавов. Часть I. Деформация: Учебник для вузов. М.: МИСиС,1997.

Petch N. J. The Cleavage Strength of Polycrystals // Journal of the Iron and Steel Institute. 1953. Vol. 174. P. 25–28.

Valiev R. Z. Structure and Mechanical Properties of Ultrafine Grained Metals // Mater. Sci. Eng. 1997. Vols. A234–A236. P. 59–66.

Pande C., Cooper K. Nanomechanics of Hall — Petch relationship in nanocrystalline materials // Prog. Mater. Sci. 2009. Vol. 54. P. 689.

Ovid’ko I. A., Valiev R. Z., Zhu Y. T. Review on superior strength and enhanced ductility of metallic nanomaterials // Progress in Materials Science. 2018. Vol. 94. P. 462–540.

Valiev R. Z., Zhilyaev A. P., Langdon T. G. Bulk Nanostructured Materials: Fundamentals and Applications. John Wiley & Sons Inc., 2014.

Valiev R. Z., Alexandrov I. V., Zhu Y. T., Lowe T. C. Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation // JMR. 2002. Vol. 17, no. 1. P. 5–8.

Wang Y., Chen M., Zhou F., Ma E. High tensile ductility in a nanostructured metal // Nature. 2002. Vol. 419. P. 912.

Valiev R. Z. Nanomaterial Advantage // Nature. 2002. Vol. 419. P. 887–889.

Morris D. G. Nanostructured Metals and Alloys. In: Processing, Microstructure, Mechanical Properties and Applications / Ed. S. H.Whang. Cambridge: Woodhead Pablishing Limited, 2011.

Mayers M. A., Mishra A., Benson D. J. Mechanical properties of nanocrystalline materials // Prog. Mater. Sci. 2006. Vol. 51. P. 427.

Valiev R. Z., Enikeev N. A., Muraskin M. Y., Kazykhanov V. U., Sauvage X. On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation // Scr. Mater. 2010. Vol. 63. P. 949.

Valiev R. Z., Enikeev N. A., Murashkin M. Y., Aleksandrov S. E., Goldshtein R. V. Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation // Dokl. Phys. 2010. Vol. 55, no. 6. P. 267.

Valiev R. Z., Enikeev N. A., Langdon T. G. Towards superstrength of nanostructured metals and alloys produced by SPD // Kovove. Mater. 2011. Vol. 49. P. 1.

Krasilnikov N., Lojkowski W., Pakiela Z., Valiev R. Z. Tensile strength and ductility of ultrafine-grained nickel processed by severe plastic deformation // Mater. Sci. Eng. 2005. Vol. A37. P. 330.

Hughes D. A., Hansen N. Microstructure and strength of nickel at large strains // Acta Metall. 2000. Vol. 48. P. 2985.

Tsuji N. Nanostructured Materials by High-Pressure Severe Plastic Deformation / Eds. Y. T. Zhu, V. Varyukhin. Dordrecht: Springer, 2006.

Furukawa M., Horita Z., Nemoto M., Valiev R. Z., Langdon T. G. Factors Influencing the Flow and Hardness of Materials with Ultrafine Grain Sizes // Philos. Mag. A. 1998. Vol. 78. P. 203.

Semenova I. P., Salimgareeva G., Da Costa G., Lefebvre W., Valiev R. Z. Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation // Adv. Eng. Mater. 2010. Vol. 12. P. 803.

Ivanisenko Y., Sergueeva A. V., Minkow A., Valiev R. Z., Fecht H. J. Nanomaterials by Severe Plastic Deformation / Eds. M. J. Zehetbauer, R. Z. Valiev. Weinheim: Wiley-VCH, 2004.

Sabirov I., Murashkin M., Valiev R. Z. Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development // Mater. Sci. Eng. 2013. Vol. A560. P. 1.

Li J. C. M. Mechanical Properties of Nanocrystalline Materials / Ed. J. S. M. Li. Singapore: Pan Stanford Publ., 2011.

Firstov S. A., Rogul T. G., Shut O. A. Transition from microstructures to nanostructures and ultimate hardening // Funct. Mater. 2009. Vol. 16. P. 4.

Фирстов С. А., Рогуль Т. Г., Марушко В. Т., Сагайдак В. А. Структура и микротвердость поликристаллического хрома, полученного методом магнетронного распыления // Вопросы материаловедения. 2003. Т. 33. С. 201.

Liddicoat P. V., Liao X. Z., Zhao Y., Zhu Y. T., Murashkin M. Y., Lavernia E. J., Valiev R. Z., Ringer S. P. Nanostructural hierarchy increases the strength of aluminium alloys // Nat. Commun. 2010. Vol. 1. P. 63.

Morris D. G. Mechanical Behaviour of Nanostructured Materials. Uetikon-Zurich: Trans. Tech., 1998.

Koch C. C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals // Scr. Mater. 2003. Vol. 49. P. 657.

Zhao Y., Zhu Y. T., Lavernia E. J. Strategies for improving tensile ductility of bulk nanostructured materials // Adv. Eng. Mater. 2010. Vol. 12. P. 76.

Ma E. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys // JOM. 2006. Vol. 58, no. 4. P. 49.

Dieter G. E. Mechanical Metallurgy. Boston: McGraw-Hill, 1986.

Hart E. W. Theory of the tensile test // Acta Metall. 1967. Vol. 15. P. 351.

Valiev R. Z. Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties // Nat. Mater. 2004. Vol. 3. P. 511.

Horita Z., Ohashi K., Fujita T., Kaneko K., Langdon T. G. Achieving high strength and high ductility in precipitation-hardened alloys // Adv. Mater. 2005. Vol. 17. P. 1599.

Wang Y., Chen M., Zhou F., Ma E. High tensile ductility in a nanostructured metal // Nature. 2002. Vol. 419. P. 912.

Hoeppel H. W., May J., Eisenlohr P., Goeken M. Z. Strain-rate sensitivity of ultrafine-grained materials // Metallkd. 2005. Vol. 96. P. 566.

May J., Hoeppel H. W., Goeken M. Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation // Scr. Mater. 2005. Vol. 53. P. 189.

Dalla Torre F., Lapovok R., Sandlin J., Thomson P. F., Davies C. H. J., Pereloma E. V. Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes // Acta Mater. 2004. Vol. 52. P. 4819.

Edalati K., Horita Z., Valiev R. Z. Transition from poor ductility to room-temperature superplasticity in a nanostuctured aluminum alloy // Sci. Rep. 2018. Vol. 8, no. 1. P. 6740. https://doi/org/10.1038/s41598-018-25140-1

Valiev R. Z., Sergueeva A. V., Mukherjee A. K. The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium // Scr. Mater. 2003. Vol. 49. P. 669.

Mughrabi H., Hoeppel H. W., Kautz M., Valiev R. Z. Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation // Z. Metallkd. 2003. Vol. 94. P. 1079.

Zhang X., Wang H., Scattergood R. O., Narayan J., Koch C. C., Sergueeva A. V., Mukherjee A. K. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn // Acta Mater. 2002. Vol. 50. P. 4823.

Park Y. S., Chung K. H., Kim N. J., Lavernia E. J. Microstructural investigation of nanocrystalline bulk Al-Mg alloy fabricated by cryomilling and extrusion // Mater. Sci. Eng. 2004. Vol. A374. P. 211.

Islamgaliev R. K., Yunusova N. F., Sabirov I. N., Sergueeva A. V., Valiev R. Z. Deformation Behaviour of Nanostructured Aluminum Alloy Processed by Severe Plastic Deformation // Mater. Sci. Eng. 2001. Vol. A319–A321. P. 877.

Orlova T. S., Skiba N. V., Mavlyutov A. M., Murashkin M., Valiev R. Z., Gutkin M. Y. Hardening by annealing and implementation of high ductility of ultra-fine grained aluminum: experiment and theory // Reviews on Advanced Materials Science. 2018. Vol. 57, no. 2. P. 224–240.

Wang Y., Ma E., Valiev R. Z., Zhu Y. Tough Nanostructured Metals at Cryogenic Temperatures // Adv. Mater. 2004. Vol. 16. P. 328.

Глезер А. М., Козлов Э. В., Конева Н. А., Попова Н. А., Курзина И. А. Основы пластической деформации наноструктурных материалов. М.: Физматлит, 2016.

Рудской А. И., Коджаспиров Г. Е. Ультрамелкозернистые металлические материалы. СПб.: Изд-во Политехн. ун-та, 2015.

Morozov N. F., Ovid’ko I. A., Skiba N. V. Plastic flow through widening of nanoscale twins in ultrafine-grained metallic materials with nanotwinned structures // Reviews of Advanced Materials Science. 2014. Vol. 37. P. 29.

Скиба Н. В. Обзор микромеханизмов пластической деформации в нанодвойникованных материалах // Вестн. С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 3. С. 489–493.

Valiev R. Z., Estrin Y., Horita Z., Langdon T. G., Zehetbauer M. J., Zhu Y. T. Fundamentals of superior properties in bulk nanoSPD materials // Materials Research Letters. 2016. Vol. 4, no. 1. P. 1–21.

References

Shtremel M. A., Strnegth of Alloys. Part I. Deformation: textbook for Institutions of Higher Education (MISiS Publ., Moscow, 1997).

Petch N. J., “The Cleavage Strength of Polycrystals”, Journal of the Iron and Steel Institute 174, 25–28 (1953).

Valiev R. Z., “Structure and Mechanical Properties of Ultrafine Grained Metals”, Mater. Sci. Eng. A234–A236, 59–66 (1997).

Pande C., Cooper K., “Nanomechanics of Hall-Petch relationship in nanocrystalline materials”, Prog. Mater. Sci. 54, 689 (2009).

Ovid’ko I. A., Valiev R. Z., Zhu Y. T., “Review on superior strength and enhanced ductility of metallic nanomaterials”, Progress in Materials Science 94, 462–540 (2018).

Valiev R. Z., Zhilyaev A. P., Langdon T. G., Bulk Nanostructured Materials: Fundamentals and Applications (John Wiley & Sons Inc., 2014).

Valiev R. Z., Alexandrov I. V., Zhu Y. T., Lowe T. C., “Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation”, JMR 17(1), 5–8 (2002).

Wang Y., Chen M., Zhou F., Ma E., “High tensile ductility in a nanostructured metal”, Nature 419, 912 (2002).

Valiev R. Z., “Nanomaterial Advantage”, Nature 419, 887–889 (2002).

Morris D. G., Nanostructured Metals and Alloys. Processing, Microstructure, Mechanical Properties and Applications (S. H.Whang (ed.), Woodhead Pablishing Limited, Cambridge, 2011).

Mayers M. A., Mishra A., Benson D. J., “Mechanical properties of nanocrystalline materials”, Prog. Mater. Sci. 51, 427 (2006).

Valiev R. Z., Enikeev N. A., Muraskin M. Y., Kazykhanov V. U., Sauvage X., “On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation”, Scr. Mater. 63, 949 (2010).

Valiev R. Z., Enikeev N. A., Murashkin M. Y., Aleksandrov S. E., Goldshtein R. V., “Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation”, Dokl. Phys. 55 (6), 267 (2010).

Valiev R. Z., Enikeev N. A., Langdon T. G., “Towards superstrength of nanostructured metals and alloys produced by SPD”, Kovove Mater. 49, 1 (2011).

Krasilnikov N., Lojkowski W., Pakiela Z., Valiev R. Z., “Tensile strength and ductility of ultrafine-grained nickel processed by severe plastic deformation”, Mater. Sci. Eng. 37, 330 (2005).

Hughes D. A., Hansen N., “Microstructure and strength of nickel at large strains”, Acta Metall. 48, 2985 (2000).

Tsuji N., Nanostructured Materials by High-Pressure Severe Plastic Deformation (Y. T. Zhu, V. Varyukhin (eds.), Springer, Dordrecht, 2006).

Furukawa M., Horita Z., Nemoto M., Valiev R. Z., Langdon T. G., “Factors Influencing the Flow and Hardness of Materials with Ultrafine Grain Sizes”, Philos. Mag. A 78, 203 (1998).

Semenova I. P., Salimgareeva G., Da Costa G., Lefebvre W., Valiev R. Z., “Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation”, Adv. Eng. Mater. 12, 803 (2010).

Ivanisenko Y., Sergueeva A. V., Minkow A., Valiev R. Z., Fecht H. J., Nanomaterials by Severe Plastic Deformation (M. J. Zehetbauer, R. Z. Valiev (eds.), Wiley-VCH, Weinheim, 2004).

Sabirov I., Murashkin M., Valiev R. Z., “Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development”, Mater. Sci. Eng. A560, 1 (2013).

Li J. C. M., Mechanical Properties of Nanocrystalline Materials (J. S. M. Li (ed.), Pan Stanford Publ., Singapore, 2011).

Firstov S. A., Rogul T. G., Marushko V. T., Sagaydak V. A., “Structure and microhardness of polycrystalline chromium produced by magnetron sputtering”, Voprosy Materialovedeniya 33, 201 (2003). (In Russian)

Firstov S. A., Rogul T. G., Shut O. A., “Transition from microstructures to nanostructures and ultimate hardening”, Funct. Mater. 16, 4 (2009).

Liddicoat P. V., Liao X. Z., Zhao Y., Zhu Y. T., Murashkin M. Y., Lavernia E. J., Valiev R. Z., Ringer S. P., “Nanostructural hierarchy increases the strength of aluminium alloys”, Nat. Commun. 1, 63 (2010).

Morris D. G., Mechanical Behaviour of Nanostructured Materials (Trans. Tech., Uetikon-Zurich, 1998).

Koch C. C., “Optimization of strength and ductility in nanocrystalline and ultrafine grained metals”, Scr. Mater. 49, 657 (2003).

Zhao Y., Zhu Y. T., Lavernia E. J., “Strategies for improving tensile ductility of bulk nanostructured materials”, Adv. Eng. Mater. 12, 76 (2010).

Ma E., “Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys”, JOM 58(4), 49 (2006).

Dieter G. E., Mechanical Metallurgy (McGraw-Hill, Boston, 1986).

Hart E.W., “Theory of the tensile test”, Acta Metall. 15, 351 (1967).

Valiev R. Z., “Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties”, Nat. Mater. 3, 511 (2004).

Horita Z., Ohashi K., Fujita T., Kaneko K., Langdon T. G., “Achieving high strength and high ductility in precipitation-hardened alloys”, Adv. Mater. 17, 1599 (2005).

Wang Y., Chen M., Zhou F., Ma E., “High tensile ductility in a nanostructured metal”, Nature 419, 912 (2002).

Hoeppel H.W., May J., Eisenlohr P., Goeken M. Z., “Strain-rate sensitivity of ultrafine-grained materials”, Metallkd. 96, 566 (2005).

May J., Hoeppel H.W., Goeken M., “Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation”, Scr. Mater. 53, 189 (2005).

Dalla Torre F., Lapovok R., Sandlin J., Thomson P. F., Davies C. H. J., Pereloma E. V., “Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes”, Acta Mater. 52, 4819 (2004).

Edalati K., Horita Z., Valiev R. Z., “Transition from poor ductility to room-temperature superplasticity in a nanostuctured aluminum alloy”, Sci. Rep. 8(1), 6740 (2018). https://doi.org/10.1038/s41598-018-25140-1

Valiev R. Z., Sergueeva A. V., Mukherjee A. K., “The Effect of Annealing on Tensile Deformation Behavior of Nanostructured SPD Titanium”, Scr. Mater. 49, 669 (2003).

Mughrabi H., Hoeppel H.W., Kautz M., Valiev R. Z., “Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation”, Z. Metallkd. 94, 1079 (2003).

Zhang X., Wang H., Scattergood R. O., Narayan J., Koch C. C., Sergueeva A. V., Mukherjee A. K., “Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn”, Acta Mater. 50, 4823 (2002).

Park Y. S., Chung K. H., Kim N. J., Lavernia E. J., “Microstructural investigation of nanocrystalline bulk Al-Mg alloy fabricated by cryomilling and extrusion”, Mater. Sci. Eng. A374, 211 (2004).

Islamgaliev R. K., Yunusova N. F., Sabirov I. N., Sergueeva A. V., Valiev R. Z., “Deformation Behaviour of Nanostructured Aluminum Alloy Processed by Severe Plastic Deformation”, Mater. Sci. Eng. A319–A321, 877 (2001).

Orlova T. S., Skiba N. V., Mavlyutov A. M., Murashkin M., Valiev R. Z., Gutkin M. Y., “Hardening by annealing and implementation of high ductility of ultra-fine grained aluminum: experiment and theory”, Reviews on Advanced Materials Science 57 (2), 224–240 (2018).

Wang Y., Ma E., Valiev R. Z., Zhu Y., “Tough Nanostructured Metals at Cryogenic Temperatures”, Adv. Mater. 16, 328 (2004).

Glezer A. M., Kozlov E. V., Koneva N. A., Popova N. A., Kurzina I. A., Basics of Plastic Deformation of Nanostructured Materials (Fizmatlit Publ., Moscow, 2016). (In Russian)

Rudskoy A. I., Kodjaspirov G. E., Ultrafine-grained Metallic Materials (Polytechnic Univ. Publishing House, St. Petersburg, 2015). (In Russian)

Morozov N. F., Ovid’ko I. A., Skiba N. V., “Plastic flow through widening of nanoscale twins in ultrafine-grained metallic materials with nanotwinned structures”, Reviews of Advanced Materials Science 37, 29 (2014).

Skiba N. V., “Review of micromechanisms of plastic deformation in nanotwinned materials”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), issue 3, 489–493 (2018). (In Russian)

Valiev R. Z., Estrin Y., Horita Z., Langdon T. G., Zehetbauer M. J., Zhu Y. T., “Fundamentals of superior properties in bulk nanoSPD materials”, Materials Research Letters 4(1), 1–21 (2016).

Published

2020-05-13

How to Cite

Valiev, R. Z. (2020). New studies of paradox of strength and ductility in nanomaterials. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(1), 112–127. https://doi.org/10.21638/11701/spbu01.2020.112

Issue

Section

Mechanics