Investigation of the large deformations of composite plane with interface crack loaded by uniform pressure
DOI:
https://doi.org/10.21638/11701/spbu01.2020.114Abstract
The analytical solution to a nonlinear problem of elasticity for the composite plane formed by connection of two half-planes from different materials with an interface crack is obtained. The elastic properties of half-planes are modeled by semi-linear harmonic material. External loading is uniform pressure, which is orthogonal to the deformed surfaces of a crack coasts, the stresses at infinity are absent. For the solution to a nonlinear plane problem methods of the theory of the complex variable functions are used. An existence of critical values of pressure at the coasts of a crack which excess conducts to loss of stability of a material and to large post-critical displacements, deformations and stresses in a vicinity of a crack is established. The critical pressures have the order of the shear modules of the materials and are really possible for low-modules rubber-like materials (elastomers). For the rigid materials with the large module of shear, in particular metals, the critical pressures really are not achieved. The formulas for disclosing of the crack coasts depending on value of pressure and parameters of materials are obtained, the plots of displacements of the crack surfaces for different values of pressure are presented. On the base of a common solution the asymptotic expansions are constructed for nominal (Piola) and Cauchy stresses in vicinities of a crack ends. The nominal stresses have the root singularities, the Cauchy stresses have no singularities at the tips of crack.
Keywords:
nonlinear plane problem, composite plane, interface crack, semi-linear material, complex-variable methods
Downloads
References
Литература
Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966.
Малькова Ю. В. Некоторые задачи для двухкомпонентной плоскости с криволинейными трещинами. СПб.: Изд-во С.-Петерб. ун-та, 2008.
Мальков В. М., Малькова Ю. В. Плоские задачи упругости для полулинейного материала // Вестн. С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2012. Вып. 3. С. 93–106.
Ru C. Q. Finite strain singular field near the tip of a crack terminated at material interface // Math. and Mech. of Solids. 1997. Vol. 2, N 1. P. 49–73.
Ru C. Q. On complex-variable formulation for finite plane elastostatics of harmonic materials // Acta Mechanica. 2002. Vol. 156, N 3–4. P. 219–234.
Ru C. Q. Non-elliptic deformation field near the tip of a mixed-mode crack in a compressible hyperelastic material // Intern. J. of Non-Linear Mech. 2003. Vol. 38, N 4. P. 521–530.
Legrain G., Mo¨es N., Verron E. Stress analysis around crack tips in finite strain problems using the extended finite element method // Intern. J. for Numerical Methods in Eng. 2005. Vol. 63, N 2. P. 290–314.
Abeyaratne R., Yang J. S. Localized shear deformations near the tip of a mode-I crack // J. of Elasticity. 1987. Vol. 17, N 2. P. 93–112.
Мальков В. М., Малькова Ю. В. Плоская задача нелинейной упругости для гармонического материала // Вестн. С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2008. Вып. 3. С. 114–126.
Мальков В. М., Малькова Ю. В., Степанова В. А. Двухкомпонентная плоскость из материала Джона с межфазной трещиной, нагруженной давлением // Вестн. С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2013. Вып. 3. С. 113–125.
Мальков В. М., Малькова Ю. В. Плоские задачи о сосредоточенных силах для полулинейного материала // Вестн. С.-Петерб. ун-та. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2013. Вып. 3. С. 83–96.
Мальков В. М., Малькова Ю. В., Доманская Т. О. Анализ напряжений двухкомпонентной плоскости и полуплоскости при действии сосредоточенной силы для двух моделей гармонического материала // Вестн. С.-Петерб. ун-та. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2016. Вып. 1. С. 38–52.
Domanskaya T. O., Malkov V. M., Malkova Yu. V. Bi-material plane with interface crack for the model of semi-linear material // International Conference on Mechanics — Eight Polyakhov’s Reading, AIP Conference Proceedings. 2018. Vol. 1959. Art. no. 070009. https://doi.org/10.1063/1.5034684
Морозов Н. Ф. Математические вопросы теории трещин. М.: Наука, 1984.
Мальков В. М. Основы математической нелинейной теории упругости. СПб.: Изд-во С.-Петерб. ун-та, 2002.
John F. Plane strain problems for a perfectly elastic material of harmonic type // Commun. Pure and Appl. Math. 1960. Vol. 13, N 2. P. 239–296.
Лурье А. И. Нелинейная теория упругости. М.: Наука, 1980.
Лурье А. И. Теория упругости. М.: Наука, 1970.
Zubov L. M. Nonlinear theory of dislocations and declinations in elastic bodies. Berlin: Springer, 1997.
Еремеев В. А., Зубов Л. М. Некоторые проблемы устойчивости трехмерных нелинейноупругих тел // Изв. вузов. Северо-Кавказский регион. Естественные науки. 1999. № 1. С. 42–47.
Черных К. Ф., Литвиненкова З. Н. Теория больших упругих деформаций. Л.: Изд-во Ленингр. ун-та, 1988.
Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974.
Алфутов Н. А. Основы расчета на устойчивость упругих систем. М., 1978.
References
Muskhelishvili N. I., Some basic problems of the mathematical theory of elasticity (Springer, Netherlands, 1977).
Mal’kova Yu. V., Some problems for bi-material plane with curvilinear cracks (St. Petersburg University Press, St. Petersburg, 2008).
Mal’kov V. M., Mal’kova Yu. V., “Plane problems of elasticity for semi-linear material”, Vestnik of Saint Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, issue 3, 93–106 (2012). (In
Russian)
Ru C. Q., “Finite strain singular field near the tip of a crack terminated at material interface”, Math. and Mech. of Solids 2 (1), 49–73 (1997).
Ru C. Q., “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica 156 (3–4), 219–234 (2002).
Ru C. Q., “Non-elliptic deformation field near the tip of a mixed-mode crack in a compressible hyperelastic material”, Intern. J. of Non-Linear Mech. 38 (4), 521–530 (2003).
Legrain G., Mo¨es N., Verron E., “Stress analysis around crack tips in finite strain problems using the extended finite element method”, Intern. J. for Numerical Methods in Eng. 63 (2), 290–314 (2005).
Abeyaratne R., Yang J. S., “Localized shear deformations near the tip of a mode-I crack”, J. of Elasticity 17 (2), 93–112 (1987).
Mal’kov V. M., Mal’kova Yu. V., “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, issue 3, 114–126 (2008). (In Russian)
Mal’kov V. M., Mal’kova Yu. V., Stepanova V. A., “Bi-material plane of John’s material with interface crack loaded by pressure”, Vestnik of Saint Petersburg University. Ser. 1. Mathematics. Mechanics. Astronomy, issue 3, 113–125 (2013). (In Russian)
Mal’kov V. M., Mal’kova Yu. V., “Plane problems on concentrated forces for semi-linear material”, Vestnik of Saint Petersburg University. Ser. 10. Applied Mathematics. Computer Science. Control Processes, issue 3, 83–96 (2013). (In Russian)
Mal’kov V. M., Mal’kova Yu. V., Domanskaya T. O., “Analysis of stresses in bi-material plane and half-plane under action of concentrated force for two models of harmonic materials”, Vestnik of Saint Petersburg University. Ser. 10. Applied Mathematics. Computer Science. Control Processes, issue 1, 38–52 (2016). (In Russian)
Domanskaya T. O., Mal’kov V. M., Mal’kova Yu. V., “Bi-material plane with interface crack for the model of semi-linear material”, Intern. Conference on Mechanics — Eight Polyakhov’s Reading, AIP Conference Proceedings 1959, 070009 (2018).
Morozov N. F., Mathematical problems of the theory of cracks (Moscow, 1984). (In Russian)
Mal’kov V. M., Foundations of non-linear mathematical elasticity (St. Petersburg, 2002). (In Russian)
John F., “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Appl. Math. 13 (2), 239–296 (1960).
Lurie A. I., Non-linear theory of elasticity (North Holland, 1990).
Lurie A. I., Theory of elasticity (Moscow, 1970).
Zubov L. M., Nonlinear theory of dislocations and declinations in elastic bodies (Springer, Berlin, 1997).
Eremeyev V. A., Zubov L. M., “Some problems of stability of three-dimensions nonlinear elastic bodies”, News of high schools. Severo-Kavkazsky Region. Natural sciences, issue 1, 42–47 (1999). (In
Russian)
Chernykh K. F., Litvinenkova Z. N., Theory of large elastic deformations (Leningrad, 1988). (In Russian)
Cherepanov G. P., Mechanics of brittle fracture (McGraw Hill Higher Education, 1980).
Alfutov N. A., Stability of elastic structures (Foundations of Engineering Mechanics) (Springer, Berlin, 2000).
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.