Ramanujan denesting formulae for cubic radicals

Authors

  • Мikhail А. Antipov National Research University Higher School of Economics; St. Petersburg State University
  • Кonstantin I. Pimenov St. Petersburg State University

Abstract

This paper contains an explanation of Ramanujan-type formulas with cubic radicals of cubic
irrationalities in the situation when these radicals are contained in a pure cubic extension.
We give a complete description of formulas of such type, answering the Zippel’s question. It turns out that Ramanujan-type formulas are in some sense unique in this situation. In particular, there must be no more than three summands in the right-hand side and the norm of the irrationality in question must be a cube. In this situation we associate with cubic irrationalities a cyclic cubic polinomial, which is reducible if and only if one can simplify the corresponding cubic radical. This correspondence is inverse to the so-called
Ramanujan correspondence defined in the preceding papers, where one associates a pure cubic extension to some cyclic polinomial.

Keywords:

Ramanujan formulas, simplification of radical, Ramanujan correspondence

Downloads

Download data is not yet available.

References

1. Berndt B. C. Ramanujan notebook's. Part IV. Springer-Verlag, 1994.

2. Zippel R. Simplification of expressions involving radicals // Journal of Symbolic Computation. 1985. Vol. 1. P. 189-210.

3. Honsbeek M. Radical extensions and Galois groups. PhD thesis at Radboud Universiteit Nijmegen, 2005.

4. Blomer J. How to denest Ramanujan's nested radicals // 33rd Annual IEEE Symposium on Foundations of Computer Science, October, Pittsburg, PA, 1992.

5. Крепкий И. А., Пименов К. И. Формулы Рамануджана с кубическими корнями и элементарная теория Галуа // Вестник С-Петерб. ун-та. Серия 1. Математика. Механика. Астрономия. 2015. Т. 2 (60). Вып. 4. С. 553-563.

6. Антипов М., Пименов К. О некоторых мультипликативных структурах на кубических расширениях // Зап. научн. сем. ПОМИ. 2018. Т. 470. С. 5-20.

7. Barbero S., Cerruti U., Murru N., Abrate M. Identities involving zeros of Ramanujan and Shanks cubic polynomials // Journal of Integer Sequences. 2013. Vol. 16, no. 8. Art. no. 13.8.1.

8. Shanks D. The simplest cubic fields // Math. Comp. 1974. Vol. 28. P. 1137-1152.

9. Witula R. Ramanujan type trigonometric formulae // Demonstratio Math. 2012. Vol. 45, no. 4. P. 779-796.

Published

2020-08-15

How to Cite

Antipov М. А., & Pimenov К. I. (2020). Ramanujan denesting formulae for cubic radicals. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(2), 187–196. Retrieved from https://math-mech-astr-journal.spbu.ru/article/view/8368

Issue

Section

On the anniversary of A. I. Generalov