Supercharacter theory for the Borel contraction of the group GL(n, Fq)

Authors

  • Aleksandr N. Panov Samara National Research University

DOI:

https://doi.org/10.21638/11701/spbu01.2020.208

Abstract

The notion of a supercharacter theory was introduсed by P. Diaconis and I. M. Isaacs in 2008. A supercharacter theory for a given finite group is a pair of a system of certain complex characters of the group and its partition into classes that have properties similar to the irreducible characters and conjugacy classes. In the present paper, we consider the group obtained by a group contraction from the general linear group over a finite field. For this group, we construct a supercharacter theory. In terms of rook placements, we classify supercharacters and superclasses, calculate values of supercharacters on superclasses.

Keywords:

group representations, irreducible characters, supercharacter theory, superclasses, algebra group

Downloads

Download data is not yet available.
 

References

1. Diaconis P., Isaacs I. M. Supercharacters and superclasses for algebra group // Trans. Amer. Math. Soc. 2008. Vol. 360. P. 2359-2392.

2. Панов А. Н. Суперхарактеры унипотентных и разрешимых групп // Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 2017. Т. 136. С. 31-55.

3. André C. A. M. Basic characters of the unitriangular group // J. of Algebra. 1995. Vol. 175. P. 287-319.

4. André C. A. M. Basic sums of coadjoint orbits of the unitriangular group // J. of Algebra. 1995. Vol. 176. P. 959-1000.

5. André C. A. M. The basic character table of the unitriangular group // J. of Algebra. 2001. Vol. 241. P. 437-471.

6. Inönü E., Wigner E. P. On the contraction of groups and their representations // Proc. Nat. Acad. Sci. 1953. Vol. 39. P. 510-524.

7. Винберг Э. Б., Онищик А. Л., Горбацевич В. В. Группы и алгебры Ли - 3. В кн.: Cовр. пробл. матем. Фундам. направл. Т. 41. М.: Изд-во ВИНИТИ, 1990.

8. Панов А. Н. Теория суперхарактеров для групп обратимых элементов приведенных алгебр // Алгебра и анализ. 2015. Т. 27, № 6. C. 242-259.

9. André C. A. M. Hecke algebra for the basic representations of the unitriangular group // Proc. Amer. Math. Soc. 2003. Vol. 132. P. 987-996.

10. Aguiar M., André C., Benedetti C., Bergeron N., Zhi Chen, Diaconis P., Hendrickson A., Hsiao S., Isaacs I. M., Jedwab A., Johnson K., Karaali G., Lauve A., Tung Le, Lewis S., Huilan Li, Magaarg K., Marberg E., Novelli J.-Ch., Pang A., Saliola F., Tevlin L., Thibon J.-Y., Thiem N., Venkateswaran V., Vinroot C. R., Ning Yan, Zabricki M. Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras // Advances in Mathematics. 2012. Vol. 229. P. 2310- 2337.

11. Panov A. N. Supercharacters for finite groups of triangular type // Comm. Algebra. 2018. Vol. 46. P. 1032-1046.

Published

2020-08-15

How to Cite

Panov, A. N. (2020). Supercharacter theory for the Borel contraction of the group GL(n, Fq). Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(2), 254–268. https://doi.org/10.21638/11701/spbu01.2020.208

Issue

Section

On the anniversary of A. I. Generalov