Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations

Authors

  • Le Minh Hieu University of Economics, The University of Danang
  • Dang Ngoc Hoang Thanh
  • V.B. Surya Prasath

DOI:

https://doi.org/10.21638/11701/spbu01.2020.216

Abstract

The present communication is devoted to the construction of monotone difference schemes of the second order of local approximation on non-uniform grids in space for 2D quasilinear parabolic convection-diffusion equation. With the help of difference maximum principle, two-sided estimates of the difference solution are established and an important a priori estimate in a uniform norm C is proved. It is interesting to note that the maximal and minimal values of the difference solution do not depend on the diffusion and convection
coefficients.
 

Keywords:

non-uniform grid, maximum principle, regularization principle, monotone difference scheme, convection-diffusion equation

Downloads

Download data is not yet available.
 

References

1. Самарский А. А. Теория разностных схем. М.: Наука, 1989.

2. Самарский А. А., Гулин А. А. Численные методы. М.: Наука, 1989.

3. Матус П. П., Во Тхи Ким Туен, Гаспар Ф. Монотонные разностные схемы для линейного параболического уравнения с граничными условиями смешанного типа // Доклады НАН Беларуси. 2014. Т. 58, № 5. С. 18-22.

4. Мажукин В. И., Малафей Д. А., Матус П. П., Самарский А. А. Р азностные схемы на неравномерных сетках для уравнений математической физики с переменными коэффициентами // ЖВМ и МФ. 2001. Т. 41, № 3. С. 407-419.

5. Малафей Д. А. Экономичные монотонные разностные схемы для многомерных задач конвенции-диффузии на неравномерных сетках // Докл. НАН Беларуси. 2000. Т. 44, № 4. С. 21-25.

6. Matus P. P., Poliakov D., Hieu L. M. On the consistent two-side estimates for the solutions of quasilinear convection-diffusion equations and their approximations on non-uniform grids // Journal of Computational and Applied Mathematics. 2018. Vol. 340. P. 571-581. DOI: 10.1016/j.cam.2017.09.020

7. Матус П. П., Хиеу Л. М., Волков Л. Г. Принцип максимума для разностных схем с непостоянными входными данными // Докл. НАН Беларуси. 2015. Т. 59, № 5. С. 13-17.

8. Friedman A. Partial differential equations of parabolic type. New York: Dover Publication Inc., 2013.

9. Samarskii A. A., Vabishchevich P. N., Matus P. P. Difference schemes with operator factors. Boston; Dordrecht; London: Kluwer Academic Publishers, 2002.

10. Prasath V. B. S., Moreno J. C. On convergent finite difference schemes for variational - PDE based image processing // Comp. Appl. Math. 2018. Vol. 37, no. 2. P. 1562-1580. DOI: 10.1007/s40314-016-0414-9

11. Koide S., Furihata D. Nonlinear and linear conservative finite difference schemes for regularized long wave equation // Japan J. Indust. Appl. Math. 2009. Vol. 26. Issue 1. Art. no. 15. DOI: 10.1007/BF03167544

12. Kalantari R., Shahmorad S. A Stable and Convergent Finite Difference Method for Fractional Black-Scholes Model of American Put Option Pricing // Comput. Econ. 2019. Vol. 53. Issue 1. P. 191- 205. DOI: 10.1007/s10614-017-9734-0

Published

2020-08-15

How to Cite

Hieu, L. M., Thanh, D. N. H., & Prasath, V. S. (2020). Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(2), 343–355. https://doi.org/10.21638/11701/spbu01.2020.216

Issue

Section

Mathematics