Comparison of the entropy of ideal gas mixture with total entropy of the components obtained from it

Authors

  • Yurii F. Gunko
  • Alexander A. Kulikov

Abstract

This paper presents two expressions define the ideal gaseous mixture entropy via its components entropies, the components being in two different conditions after segregation. In one case the components have the mixture temperature and pressure, whereas in the second case they also have the mixture temperature but their own partial pressure.As follows of data analysis, the conditions under which the mixture entropy is equal to the sum of its components are derived. The complete analysis allows us to some controversies called “The Gibbs paradox”. Refs 4.

Downloads

Download data is not yet available.

References

1. Игнатович В.Н. Парадокс Гиббса с точки зрения математика. Киев: Атопол, 2010. 80 с.

2. Крутов В.И. Техническая термодинамика. М.: Высш. шк., 1991. 384 с.

3. Fermi E. Thermodynamics. Prentice Hall, 1937.

4. Plank М. Einfu¨hrung in die Theoretische Physik. V. Einfu¨hrung in die Theorie der Wo¨rme. Leipzig: Verlag von S. Hirzel, 1930.

Published

2020-08-20

How to Cite

Gunko, Y. F. ., & Kulikov, A. A. . (2020). Comparison of the entropy of ideal gas mixture with total entropy of the components obtained from it. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(4), 675–682. Retrieved from https://math-mech-astr-journal.spbu.ru/article/view/8673

Issue

Section

Mechanics