The numerical comparing of classical and permutation methods of statistical hypothesis testing
Abstract
Статья посвящена классической задаче проверки статистической гипотезы о равенстве двух распределений. Для нормальных распределений во многих смыслах оптимальным является критерий Стьюдента. Но на практике сравниваемые распределения часто не являются нормальными и, вообще говоря, неизвестны. В случае, когда ничего не известно относительно сравниваемых распределений, для решения этой задачи обычно применяется непараметрический критерий Колмогорова-Смирнова. В статье рассматриваются методы, основанные на перестановках, которые в последние годы привлекают внимание своей простотой, универсальностью и достаточно высокой эффективностью. Методами стохастического моделирования проведено сравнительное исследование мощности нескольких перестановочных тестов и классических методов (тесты Колмогорова-Смирнова, Стьюдента и Манна-Уитни) для широкого класса функций распределения. Рассматриваются нормальные распределения, распределения Коши и их смеси, а также экспоненциальные распределения, распределения Вейбулла, Фишера и Стьюдента.Установлено, что для многих типичных распределений наибольшую мощность имеет перестановочный метод, основанный на сумме абсолютных величин разностей. Особенно велико преимущество этого метода перед остальными в случае, когда сравниваются симметричные распределения с совпадающими центрами. Таким образом, указанный перестановочный метод можно рекомендовать к применению в тех случаях, когда сравниваемые распределения отличны от нормальных. Библиогр. 9 назв. Табл. 5.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.