Influence of variable molecular diameter on the viscosity coefficient in the state-to-state approach

Authors

  • Olga V. Kornienko
  • Elena V. Kustova

Abstract

The influence of variable diameter of vibrationally excited molecules on the shear viscosity coefficient in the state-to-state approach is studied. Three models for molecular diameters are considered: Kang-Kunc, Morse, and Tietz-Hua. On the basis of these models, diameters of N2, O2, NO molecules for different vibrational-rotational states are calculated. The Kang and Kunc model yields exponential increasing of the molecular diameter for vibrational levels higher than 10, and therefore its use is reasonable only at low temperatures. Tietz-Hua and Morse models provide similar values for diameters. It is shown that contribution of rotational excitation to the diameters of considered molecules can be neglected. For various potentials, temperatures, and both equilibrium and non-equilibrium vibrational distributions the ratio of state-to-state shear viscosity coefficient to that for the molecule in the ground state is calculated. For all cases considered, rising of molecular size with the vibrational state does not affect the viscosity coefficient; the deviation does not exceed 7%. Thus we prove the validity of the assumption that dependence of elastic collision cross section on the vibrational state can be neglected while calculating state-to-state transport coefficients. This gives justification for applying simplified algorithms for simulation of state-specific transport coefficients which reduce considerably computational resources required for the solution of modern non-equilibrium fluid dynamic problems. Refs 16. Figs 5. Tables 6.

Downloads

Download data is not yet available.

References

1. Montroll E., Shuler K. Studies in nonequilibrium rate processes. I. The relaxation of a system of harmonic oscillators // J. Chem. Phys. 1957. Vol. 26. P. 454-464.

2. Adamovich I., Macheret S., Rich J., Treanor C. Vibrational relaxation and dissociation behind shock waves // AIAA Journal. 1995. Vol. 33. P. 1064-1075.

3. Armenise I., Capitelli M., Colonna G., Gorse C. Nonequilibrium vibrational kinetics in the boundary layer of re-entering bodies // J. Thermophys. Heat Transfer. 1996. Vol. 10. P. 397-405.

4. Candler G., Olejniczak J., Harrold D. Detailed simulation of nitrogen dissociation in stagnation regions // Phys. Fluids. 1997. Vol. 9. P. 2108-2117.

5. Giordano D., Bellucci V., Colonna G., Capitelli M., Armenise I., Bruno C. Vibrationally relaxing flow of N past an infinite cylinder // J. Thermophys. Heat Transfer. 1997. Vol. 11. P. 27-35.

6. Kustova E.V., Nagnibeda E.A. Transport properties of a reacting gas mixture with strong vibrational and chemical nonequilibrium // Chem. Phys. 1998. Vol. 233. P. 57-75.

7. Colonna G., Capitelli M., Tuttafesta M., Giordano D. Non-arrhenius NO formation rate in one-dimensional nozzle airflow // J. Thermophys. Heat Transfer. 1999. Vol. 13. P. 372-375.

8. Capitelli M., Ferreira C., Gordiets B., Osipov A. Plasma Kinetics in Atmospheric Gases. Vol. 31 of Springer series on atomic, optical and plasma physics, Springer-Verlag, Berlin, 2000.

9. Kim J., Boyd I. State-resolved master equation analysis of thermochemical nonequilibrium of nitrogen // Chem. Phys. 2013. Vol. 415. P. 237-246.

10. Kang S.H., Kunc J.A. Molecular diameters in high-temperature gases // J. Phys. Chem. 1991. Vol. 95. P. 6971-6973.

11. Gorbachev Yu.E., Gordillo-Vazques F.J., Kunc J.A. Diameters of rotationally and vibrationally excited diatomic molecules // Physica A. 1997. Vol. 247. P. 108-120.

12. Gordillo-Vazquez F.J., Kunc J.A. Rotational-vibrational levels of diatomic molecules represented by the Tietz-Hua rotating oscillator // J. Phys. Chem. 1997. Vol. 101. P. 1595-1602.

13. Gordillo-Vazquez F.J., Kunc J.A. Radial probability of atoms in diatomic molecules represented by the rotating Morse and Tietz-Hua oscillators // J. Mol. Structure. 1998. Vol. 425. P. 263-270.

14. Kustova E.V., Kremer G.M. Effect of molecular diameters on state-to-state transport properties: the shear viscosity coefficient // Chem. Phys. Lett. 2015. Vol. 636. P. 84-89.

15. Kunova O., Kustova E., Mekhonoshina M., Nagnibeda E. Non-equilibrium kinetics, diffusion and heat transfer in shock heated flows of N2/N and O2/O mixtures // Chem. Phys. 2015. Vol. 463. P. 70-81.

16. Kustova E., Nagnibeda E., Alexandrova T., Chikhaoui A. On the non-equilibrium kinetics and heat transfer in nozzle flows // Chem. Phys. 2002. Vol. 276. P. 139-154.

Published

2020-08-20

How to Cite

Kornienko, O. V. ., & Kustova, . E. V. . (2020). Influence of variable molecular diameter on the viscosity coefficient in the state-to-state approach. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(3), 457–467. Retrieved from https://math-mech-astr-journal.spbu.ru/article/view/8692

Issue

Section

Mechanics