Симптомно-синдромальный анализ многомерных категориальных данных на основе полиномов Жегалкина
DOI:
https://doi.org/10.21638/spbu01.2021.302Аннотация
В работе изучаются распределения, энтропия и другие информационные свойства конечных проективных подпространств (синдромов), параметризуемых при помощи импульсных последовательностей с базовыми элементами в виде полиномов Жегалкина над полем характеристики два (симптомов). Доказано, что суперсиндромы, полученные при рассмотрении в качестве базовых элементов мультипликативного синдрома, замкнуты. Классы симптомов, упорядоченные по мажорированию, то есть нейтральности одного из симптомов при конъюнкции, образуют мажорированный синдром, для которого доказано свойство идентичности синдрома и суперсиндрома. Сформулированные в первой части работы утверждения используются для обоснования сходимости итерационной процедуры (ИП), в которой наиболее информативные симптомы, отобранные из частичных суперсиндромов меньшей размерности, вновь подаются на вход. Стационарное состояние ИП достигается в случае принадлежности всех элементов входного множества или одному и тому же частичному суперсиндрому, или мажорированному синдрому. Благодаря ИП удается выделять наиболее информативные симптомы из большой совокупности переменных с меньшей трудоемкостью. На примере из фтизиатрии показано, каким образом при помощи симптомного анализа можно улучшить специфичность классификации.Ключевые слова:
многомерный анализ категориальных данных, конечные геометрии, алгебраические нормальные формы
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.