On the conditions for cycles existence in a second-order discrete-time system with sector-nonlinearity

Authors

  • Tatiana E. Zvyagintseva St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.106

Abstract

In this paper, a second-order discrete-time automatic control system is studied. This work is a continuation of the research presented in the author’s papers “On the Aizerman problem: coefficient conditions for the existence of a four-period cycle in a second-order discrete-time system” and “On the Aizerman problem: coefficient conditions for the existence of threeand six-period cycles in a second-order discrete-time system”, where systems with two- and three-periodic nonlinearities lying in the Hurwitz angle were considered. The systems with nonlinearities subjected to stronger constraints are discussed in this paper. It is assumed that the nonlinearity not only lies in the Hurwitz angle, but also satisfies the additional sector-condition. This formulation of the problem is found in many works devoted to theoretical and applied questions of the automatic control theory. In this paper, a system with such nonlinearity is explored for all possible values of the parameters. It is shown that in this case there are parameter values for which a system with a two-periodic nonlinearity has a family of four-period cycles, and a system with a three-periodic nonlinearity has a family of three- or six-period cycles. The conditions on the parameters under which the system can have a family of periodic solutions are written out explicitly. The proofs of the theorems provide a method for constructing nonlinearity in such a way that any solution of the system with initial data lying on some definite ray is periodic.

Keywords:

second-order discrete-time system, Aizerman conjecture, sector nonlinearity, absolute stability, periodic solution

Downloads

Download data is not yet available.
 

References

Литература

1. Леонов Г.А. О проблеме Айзермана. Автомат. и телемех., (7), 37–49 (2009).

2. Леонов Г.А., Кузнецов Н.В., Брагин В.О. О проблемах Айзермана и Калмана. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия, вып. 3, 31–47 (2010).

3. Либерзон М.Р. Очерки о теории абсолютной устойчивости. Автомат. и телемех., (10), 86–119 (2006).

4. Звягинцева Т.Е. О проблеме Айзермана: коэффициентные условия существования цикла периода четыре в двумерной дискретной системе. Вестник Санкт-Петербургско- го университета. Математика. Механика. Астрономия 7 (65), вып. 1, 50–59 (2020). https://doi.org/10.21638/11701/spbu01.2020.105

5. Звягинцева Т. Е. О проблеме Айзермана: коэффициентные условия существования цик- лов периодов три и шесть в двумерной дискретной системе. Вестник Санкт-Петербург- ского университета. Математика. Механика. Астрономия 7 (65), вып. 2, 309–318 (2020). https://doi.org/10.21638/11701/spbu01.2020.213

6. Heath W. P., Carrasco J., de la Sen M. Second-order counterexample to the discrete-time Kalman conjecture. Proceedings of the European Control Conference (ECC15), 2015, Linz, Austria, 981–985 (2015). https://doi.org/10.1109/ECC.2015.7330669

7. HeathW. P., Carrasco J., de la Sen M. Second-order counterexamples to the discrete-time Kalman conjecture. Automatica 60, 140–144 (2015). https://doi.org/10.1016/j.automatica.2015.07.005

8. Heath W. P., Carrasco J. Global asymptotic stability for a class of discrete-time systems. Proceedings of the European Control Conference (ECC15), 2015, Linz, Austria, 969–974 (2015). https://doi.org/10.1109/ECC.2015.7330667

References

1. Leonov G.A. On the Aizerman problem. Avtomat. i Telemekh., (7), 37–49 (2009). (In Russian) [Engl. transl.: Autom. Remote Control 70 (7), 1120–1131 (2009). https://doi.org/10.1134 /S0005117909070042].

2. Leonov G.A., Kuznetsov N.V., Bragin V.O. On problems of Aizerman and Kalman. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, iss. 3, 31–47 (2010). (In Russian) [Engl. transl.: Vestnik St.Petersb. Univ. Math. 43, iss. 3, 148–162 (2010). https://doi.org/10.3103/S1063454110030052].

3. Liberzon M.R. Essays on the absolute stability theory. Avtomat. i Telemekh., (10), 86– 119 (2006). (In Russian) [Engl. transl.: Autom. Remote Control 67 (10), 1610–1644 (2006). https://doi.org/10.1134/S0005117906100043].

4. Zvyagintseva T. E. On the Aizerman problem: coefficient conditions for the existence of a fourperiod cycle in a second-order discrete-time system. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 1, 50–59 (2020). https://doi.org/10.21638/11701/spbu01.2020.105 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 53, iss. 1, 37–44 (2020). https://doi.org/10.1134/S1063454120010161].

5. Zvyagintseva T.E. On the Aizerman problem: coefficient conditions for the existence of threeand six-period cycles in a second-order discrete-time system. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 7 (65), iss. 2, 309–318 (2020). https://doi.org/10.21638/11701/spbu01.2020.213 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 53, iss. 2, 206–213 (2020). https://doi.org/10.1134/S106345412002017X].

6. Heath W. P., Carrasco J., de la Sen M. Second-order counterexample to the discrete-time Kalman conjecture. Proceedings of the European Control Conference (ECC15). 2015. Linz, Austria, 981–985 (2015). https://doi.org/10.1109/ECC.2015.7330669

7. HeathW. P., Carrasco J., de la Sen M. Second-order counterexamples to the discrete-time Kalman conjecture. Automatica 60, 140–144 (2015). https://doi.org/10.1016/j.automatica.2015.07.005

8. Heath W. P., Carrasco J. Global asymptotic stability for a class of discrete-time systems. Proceedings of the European Control Conference (ECC15), 2015, Linz, Austria, 969–974 (2015). https://doi.org/10.1109/ECC.2015.7330667

Published

2021-05-29

How to Cite

Zvyagintseva, T. E. (2021). On the conditions for cycles existence in a second-order discrete-time system with sector-nonlinearity. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(1), 63–72. https://doi.org/10.21638/spbu01.2021.106

Issue

Section

Mathematics