Dynamic of a statically unbalanced rotor with eccentric ball autobalancer
Abstract
A statically unbalanced rotor equipped with an automatic ball balancer, the axis of symmetry of which does not coincide with the symmetry axis of the rotor, is considered. Based on a simple model of the Jeffcott’s rotor, the equations of motion of the system are derived in the fixed and rotating coordinate systems, as well as the equations describing the steady-state modes of motion. Fundamentally unenforceability of the conditions of existence of balanced steady-state mode for a rotor with variable imbalance is established. For autobalancer with two balls the possibility of the existence of two different types of unbalanced steady-state modes is shown. The steady-state mode with a constant residual vibration, whose amplitude is independent of the angular velocity and is equal to eccentricity of the balancer, is proposed to be called half-balanced. A solution that corresponds to half-balanced mode is constructed explicitly; the conditions of its existence and sustainability are found. Two-parameter stability diagrams for half-balanced steadystate mode are constructed using numerical methods. Numerical study of nonstationary motion modes of the rotor when it rotates at a constant angular velocity is performed. Refs 6. Figs 5.
Keywords:
the ball autobalancing device, statically unbalanced rotor
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.