Areas of attraction of the pendulum under the influence of oblique vibration of the suspension point

Authors

  • Аlexander G. Petrov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.312

Abstract

The inverse problem of stabilizing a spherical pendulum in a given position by means of high-frequency vibration of the suspension point is posed. The position of the pendulum is determined by the angle between the pendulum rod and the vertical. For any given position of the pendulum, a one-parameter series of oblique vibration characteristics (the amplitude of the vibration velocity and the angle between the vibration velocity vector and the vertical) is found to stabilize the pendulum in this position. For the obtained series, the regions of attraction are determined (the initial points from which a given stable position of the pendulum will be established under the influence of vibration).

Keywords:

spherical pendulum, stability, vibration of the suspension point, inverse problem, region of attraction

Downloads

Download data is not yet available.
 

References

Литература

1. Stephenson A. On a new type of dynamical stability. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 52 (8), 1–10 (1908).

2. Боголюбов Н.Н. Теория возмущений в нелинейной механике. В: Сб. тр. Ин-та строит. механики АН УССР. Вып. 14, 9–34 (1950).

3. Капица П.Л. Динамическая устойчивость маятника при колеблющейся точке подвеса. Журн. эксперим. и теорет. физики 21, вып. 5, 588–598 (1951).

4. Капица П.Л. Маятник с вибрирующим подвесом. Успехи физических наук 44, вып. 1, 7–20 (1951).

5. Brockett R. A stabilization problem. In: Open Problems in Mathematical Systems and Control Theory. London, Springer (1999).

6. Леонов Г.А. Проблема Брокетта в теории устойчивости линейных дифференциальных уравнений. Алгебра и анализ 13 (4), 134–155 (2001).

7. Leonov G.A. The Brockett Problem in the Theory of Nonstationary Stabilization of Linear Differential Equations. Amer. Math. Soc. Transl. 205 (2), 163–173 (2002).

8. Леонов Г.А. Проблема Брокетта для линейных дискретных систем управления. Автоматика и телемеханика, (5), 92–96 (2002).

9. Moreau L., Aeyels D. Stabilization by means of periodic output feedback. Proc. of Сonference of Decision and Control (CDC) 1, 108–109 (1999). https://doi.org/10.1109/CDC.1999.832758

10. Moreau L., Aeyels D. A note on stabilization by periodic output feedback for third-order systems. Proc. of the 14th International Symposium of Mathematical Theory of Networks and Systems (MTNS), June 19–23, 2000, Perpignan (2000).

11. Moreau L., Aeyels D. Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree. Systems & Control Letters 51 (5), 395–406 (2004).

12. Морозов Н.Ф., Беляев А.К., Товстик П.Е., Товстик Т.П. Области притяжения в обобщенной задаче Капицы. Доклады Aкадемии наук 487 (5), 502–506 (2019). https://doi.org/10.31857/S0869-56524875502-506

13. Петров А.Г. Обратная задача стабилизации сферического маятника в заданном положении под действием косой вибрации. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 8 (66), вып. 2, 000–000 (2021). https://doi.org/10.21638/spbu01.2021.206

References

1. Stephenson A. On a new type of dynamical stability. Memoirs and Proceedings of the Manchester Literary and Philosophical Society 52 (8), 1–10 (1908).

2. Bogolyubov N.N. Perturbation theory in non-linear mechanics. In: Sbornik Trudov Inst. Stroit. Mekh. Akad. Nauk UkSSR. Iss. 14, 9–34 (1950). (In Russian)

3. Kapitsa P.L. Dynamic stability of a pendulum with an oscillating suspension point. Zh. Eksp. Teor. Fiz. 21 (5), 588–598 (1951). (In Russian)

4. Kapitsa P.L. The pendulum in vibrating support. Uspekhi fizicheskikh nauk 44 (1), 7–20 (1951). (In Russian)

5. Brockett R. A stabilization problem. In: Open Problems in Mathematical Systems and Control Theory. London, Springer (1999).

6. Leonov G.A. The Brockett problem in the stability theory for linear differential equations. Algebra i Analiz 13 (4), 134–155 (2001). (In Russian) [Engl. transl.: St. Petersburg Math. J. 13 (4), 613–628 (2002)].

7. Leonov G.A. The Brockett Problem in the Theory of Nonstationary Stabilization of Linear Differential Equations. Amer. Math. Soc. Transl. 205 (2), 163–173 (2002).

8. Leonov G.A. The Brockett Problem for Linear Discrete Control Systems. Avtomat. i Telemekh., iss. 5, 92–96 (2002). (In Russian) [Engl. transl.: Automation and Remote Control 63, 777–781 (2002). https://doi.org/10.1023/A:1015497921140].

9. Moreau L., Aeyels D. Stabilization by means of periodic output feedback. Proc. of Сonference of Decision and Control (CDC) 1, 108–109 (1999). https://doi.org/10.1109/CDC.1999.832758

10. Moreau L., Aeyels D. A note on stabilization by periodic output feedback for third-order systems. Proc. of the 14th International Symposium of Mathematical Theory of Networks and Systems (MTNS), June 19–23, 2000, Perpignan (2000).

11. Moreau L., Aeyels D. Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree. Systems & Control Letters 51 (5), 395–406 (2004).

12. Morozov N.F., Belyaev А.К., Tovstik P. E., Tovstik T.M., Tovstik T.P. Attraction basins in the generalized Kapitsa’s problem. Doklady Akademii nauk 487 (5), 502–506 (2019). https://doi.org/10.31857/S0869-56524875502-506 (In Russian)

13. Petrov A.G. The inverse problem of stabilization of a spherical pendulum in a given position under oblique vibration. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 8 (66), iss. 2, 000–000 (2021). https://doi.org/10.21638/spbu01.2021.206 (In Russian) [Engl. transl.: Vestnik St. Petersburg University, Mathematics 54, iss. 2, 000–000 (2021)].

Published

2021-09-26

How to Cite

Petrov А. G. (2021). Areas of attraction of the pendulum under the influence of oblique vibration of the suspension point. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(3), 511–522. https://doi.org/10.21638/spbu01.2021.312

Issue

Section

Mechanics