Minimax stabilization of the line-of-sight of an inertial object on a moving base in the presence of friction force

Authors

  • Vasilii V. Latonov Central Aerohydrodynamic Institute named after N.Y. Zhukovsky, 1, ul. Zhukovskogo, Moskovskaya oblast’, Zhukovsky, 140181, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2022.113

Abstract

The solution of the problem of optimal stabilization of the line-of-sight of an inertial object in the vicinity of the program trajectory is given. The motion of this line is described by a system of nonlinear differential equations of the fourth order. The system of equations is linearized in the vicinity of the desired motion mode. In the problem solved, the perturbations are represented as deviations of the initial position from zero, as well as in the form of constant perturbations. The stabilization is carried out by means of linear feedback. In the problem, the feedback coefficients are calculated as optimal for the worst possible disturbances. Calculations are performed in two ways: a search of all possible combinations of parameters with a given sampling step and a parallel genetic algorithm.

Keywords:

line-of-sight, optimization, stabilization, minimax control, disturbances, genetic algorithm

Downloads

Download data is not yet available.
 

References

Литература

1. Александров А.Ю., Тихонов А.А. Одноосная стабилизация вращательного движения твердого тела при наличии возмущений с нулевыми средними значениями. Вестник Санкт- Петербургского университета. Математика. Механика. Астрономия 6 (64), вып. 2, 270–280 (2019). https://doi.org/10.21638/11701/spbu01.2019.209

2. Alexandrov V.V., Bugrov D. I., Corona M.G., Tikhonova K.V. Tent-method application for minmax stabilization and maxmin testing. IMA J. of Math. Control and Inform. 34 (1), 15–25 (2017). https://doi.org/ 10.1093/imamci/dnv028

3. Александрова О.В., Козик А.А. Минимаксная оптимизация параметров стабилизации про- граммного полета. Вестн. Моск. ун-та. Сер. 1. Матем., мех., №3, 45–49 (2019).

4. Александров В.В., Рамирез Гутиерез Х.А. Алгоритм минимаксной стабилизации линейных систем третьего порядка. Вест. Моск. ун-та. Сер. 1. Матем. мех., №2, 47–52 (2018).

5. Латонов В.В. Задача минимаксной оптимизации системы стабилизации линии визирования. Вест. Моск. ун-та. Матем. Механ., №6, 64–68 (2019).

6. Харитонов В.Л. Об асимптотической устойчивости положения равновесия семейства систем линейных дифференциальных уравнений. Дифференц. уравнения 14 (11), 2086–2088 (1978).

7. Латонов В.В., Тихомиров В.В. Управление линией визирования цели по видеоизображе- нию. Вест. Моск. ун-та. Сер. 1. Матем., мех., №1, 53–59 (2018).

8. Beard R.W., McLain T.W. Implementing Dubins airplane path on fixed-wing UAVs. In: Springer handbook of unmanned aerial vehicles, 1677–1701 (2013).

9. Поляк Б.Т.,Щербаков П.С. Робастная устойчивость и управление. Москва, Наука (2002).

10. Lara-Ramirez J. E., Garcia-Capulin C.H., Estudillo-Ayala M. J., Avina-Cervantes J.G., Sanchez-Yanez R.E., Rostro-Gonzalez H. Parallel hierarchical genetic algorithm for scattered data fitting through B-splines. Applied Sciences 9 (11), 2336 (2019). https://doi.org/10.3390/app9112336

References

1. Aleksandrov A.Yu., Tikhonov A.A. Uniaxial Attitude Stabilization of a Rigid Body under Conditions of Nonstationary Perturbations with Zero Mean Values. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 6 (64), iss. 2, 270–280 (2019). https://doi.org/10.21638/11701/spbu01.2019.209 (In Russian) [Eng. transl.: Vestnik St Petersburg University, Mathematics 52 (2), 187–193 (2019). https://doi.org/10.1134/S106345411902002X].

2. Alexandrov V.V., Bugrov D. I., Corona M.G., Tikhonova K.V. Tent-method application for minmax stabilization and maxmin testing. IMA J. of Math. Control and Inform. 34 (1), 15–25 (2017). https://doi.org/10.1093/imamci/dnv028

3. Aleksandrova O.V., Kozik A.A. Minimax Optimization of Stabilization Parameters during the Programmed Flight. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 3, 45–49 (2019). (In Russian) [Eng. transl.: Moscow Univ. Mech. Bull. 74 (3), 55–59 (2019). https://doi.org/10.3103/S0027133019030014].

4. Alexandrov V.V., Ramirez Gutierez Kh.A. A Minimax Stabilization Algorithm for the Third- Order Linear Systems. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 2, 47–52 (2018). (In Russian) [Eng. transl.: Moscow Univ. Mech. Bull. 73 (2), 33–38 (2018). https://doi.org/10.3103/S0027133018020024].

5. Latonov V.V. Minimax optimization for a system of line-of-sight stabilization. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 6, 64–68 (2019). (In Russian) [Eng. transl.: Moscow Univ. Mech. Bull. 74 (6), 159–163 (2019)].

6. Kharitonov V. L. Asymptotic Stability of an Equilibrium Position of a Family of Systems of Linear Differential Equations. Differ. Uravn. 14 (11), 2086–2088 (1978). (In Russian)

7. Latonov V.V., Tikhomirov V.V. Line-of-Sight Guidance Control Using Video Images. Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., no. 1, 53–59 (2018). (In Russian) [Eng. transl.: Moscow Univ. Mech. Bull. 73 (1), 11–17 (2018). https://doi.org/10.3103/S002713301801003X].

8. Beard R.W., McLain T.W. Implementing Dubins airplane path on fixed-wing UAVs. In: Springer handbook of unmanned aerial vehicles, 1677–1701 (2013).

9. Polyak B.T., Shcherbakov P. S. Robust Stability and Control. Moscow, Nauka Publ. (2002). (In Russian)

10. Lara-Ramirez J. E., Garcia-Capulin C.H., Estudillo-Ayala M. J., Avina-Cervantes J.G., Sanchez-Yanez R.E., Rostro-Gonzalez H. Parallel hierarchical genetic algorithm for scattered data fitting through B-splines. Applied Sciences 9 (11), 2336 (2019). https://doi.org/10.3390/app9112336

Published

2022-04-11

How to Cite

Latonov, V. V. (2022). Minimax stabilization of the line-of-sight of an inertial object on a moving base in the presence of friction force. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(1), 135–143. https://doi.org/10.21638/spbu01.2022.113

Issue

Section

Mechanics