On mathematical modeling of a hypersonic flow past a thin wing with variable shape

Authors

  • Vsevolod I. Bogatko St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Elena A. Potekhina St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.409

Abstract

The present work is devoted to a further study of the spatial flowing of a thin wing of variable shape by a hypersonic flow of non-viscous gas. The head shock wave is considered to be attached to the leading edge of the wing. The use of the thin shock layer method for solving the system of gas dynamics equations makes it possible to build a mathematical model of the flow in question. It should also be noted that the analysis of boundary conditions makes it possible to determine the structure of the expansion of the quantities sought in a series and to construct approximate analytical solutions. In this case, in determining the first approximation corrections, two equations are integrated independently of the other equations. The application of the Euler - Ampere transform allows to construct a solution depending on two arbitrary functions and an unknown of the shock front. To determine these functions, previously it was obtained an integro-differential system of equations. This paper proposes one of the variants of the semi-inverse method for constructing the solution of this system, in which the form of one of arbitrary function is given. This approach allows you to additionally set the equation for the leading edge of the wing, and in the case when the head wave is attached along the entire leading edge and the inclination of the wing surface on it. The variant of the semi-inverse method presented in the work for the non-stationary spatial problem of the flow has made it possible to obtain a particular solution, which is a model for various flow regimes around the wing. Formulas are obtained to determine: the shape of the front of the shock wave, the shape of the surface of the streamlined body, the distance between the shock wave and the surface of the body, and the flow parameters on the wing surface.

Keywords:

mathematical modeling, hypersonic flowing of bodies, unsteady flows, partial differential equations, small parameter

Downloads

Download data is not yet available.
 

References

Литература

1. Черный Г.Г. Течения газа с большой сверхзвуковой скоростью. Москва, Физматгиз (1959).

2. Hayes W.D., Probstein R.F. Hypersonic flow theory. New York, London, Academic Press (1959).

3. Лунев В.В. Гиперзвуковая аэродинамика. Москва, Машиностроение (1975).

4. Голубинский А.И., Голубкин В.Н. О пространственном обтекании тонкого крыла гиперзвуковым потоком газа. Доклады АН СССР 234 (5), 794–802 (1977).

5. Богатко В.И., Колтон Г.А., Потехина Е.А. Полуобратныйметод решения пространственной задачи обтекания тонкого крыла гиперзвуковым потоком газа. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия 2 (60), вып. 1, 98–105 (2015).

6. Bogatko V.I., Potekhina E.A., Kolton G.A. An approach to solution of spatial hypersonic flow past a thin wing problem. International Conference on Mechanics - Seventh Polyakhov’s Reading, 1–3 (2015). https://doi.org/10.1109/POLYAKHOV.2015

7. Голубкин В.Н. К теории гиперзвукового обтекания тонкого треугольного крыла конечной стреловидности под большим углом атаки. Прикладная математика и механика 84 (4), 467–480 (2020). https://doi.org/10.31857/S0032823520040050

8. Богатко В.И., Гриб А.А., Колтон Г.А. Обтекание тонкого крыла переменнойформы гиперзвуковым потоком газа. Известия АН СССР. Механика жидкости и газа, (4), 94–101 (1979).

9. Bogatko V.I., Potekhina E.A. To the Problem of Modeling Gas Flows Behind the Strong Shock Wave Front Using an Effective Adiabatic Index. Vestnik St. Petersb. Univ. Math. 53 (1), 77–81 (2020). https://doi.org/10.21638/11701/spbu01.2020.111

10. Тарнавский Г.А., Шпак С.И. Способы расчета эффективного показателя адиабаты при компьютерном моделировании гиперзвуковых течений. Сибирский журнал индустриальной математики 4 (1), 177–196 (2001).

11. Кузнецов М.М. О неравновесном обтекании тонкого крыла гиперзвуковым потоком газа. Труды Центрального аэрогидродинамического института, вып. 2177, 77–95 (1983).

References

1. Chernyi G.G. Gas flows with a high supersonic velocity. Moscow, Fizmatgiz Publ. (1959). (In Russian)

2. Hayes W.D., Probstein R.F. Hypersonic flow theory. New York, London, Academic Press (1959).

3. Lunev V.V. Hypersonic aerodynamics. Moscow, Mashinostroenie Publ. (1975). (In Russian)

4. Golubinskij A.I., Golubkin V.N. On the spatial flow of a thin wing by a hypersonic gas flow. Dokl. Akad. Nauk SSSR 234 (5), 794–802 (1977). (In Russian)

5. Bogatko V.I., Kolton G.A., Potekhina E.A. Semi-inverse method for solving the spatial problem of thin wing flow in a hypersonic gas flow. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy 2 (60), iss. 1, 98–105. (2015). (In Russian)

6. Bogatko V.I., Potekhina E.A., Kolton G.A. An approach to solution of spatial hypersonic flow past a thin wing problem. International Conference on Mechanics - Seventh Polyakhov’s Reading, 1–3 (2015). https://doi.org/10.1109/POLYAKHOV.2015

7. Golubkin V.N. To the Theory of Hypersonic Flow over Thin Finite Sweep Delta Wing at High Incidence. Journal of Applied Mathematics and Mechanics 84 (4), 467–480 (2020). https://doi.org/10.31857/S0032823520040050 (In Russian)

8. Bogatko V.I., Grib A.A., Kolton G.A. Hypersonic gas flow around a thin wing of variable shape. Izvestiya Akademii nauk SSSR. Mekhanika zhidkosti i gaza, (4), 94–101 (1979). (In Russian)

9. Bogatko V.I., Potekhina E.A. To the Problem of Modeling Gas Flows Behind the Strong Shock Wave Front Using an Effective Adiabatic Index. Vestnik St. Petersb. Univ. Math. 53 (1), 77–81 (2020).https://doi.org/10.21638/11701/spbu01.2020.111

10. Tarnavsky G.A., Shpak S.I. Methods for calculating the effective adiabatic index in computer simulation of hypersonic flows. Sibirskii Zhurnal Industrial’noi Matematiki 4 (1), 177–196 (2001). (In Russian)

11. Kuznetsov M.M. On nonequilibrium flow of a thin wing by a hypersonic gas flow. Trudy Tsentral’nogo aerogidrodinamicheskogo instituta, iss. 2177, 77–95 (1983). (In Russian)

Published

2022-01-04

How to Cite

Bogatko, V. I., & Potekhina, E. A. (2022). On mathematical modeling of a hypersonic flow past a thin wing with variable shape. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(4), 639–645. https://doi.org/10.21638/spbu01.2021.409

Issue

Section

Mechanics