Control damping for elastic vibrations of a distributed system with the sensor - actuator overcharge
DOI:
https://doi.org/10.21638/spbu01.2022.413Abstract
This project develops the modal control system for vibration damping of an elastic object with distributed parameters. Non-controllable upper modes excitement sets a limit on control efficiency of individual lowest elastic mode damping. The study tests the control operability in relation to the changing sensor - actuator number while the feedback loops remains the same. Simulation results show spillover effect degradation in case the sensor - actuator overcharge. Control algorithm includes of identification procedure instead of de signing with the object model assistance. The present procedure puts the modal matrices to separate the inherent object modes from the sensor signals and to suppress the modes using the actuators.Keywords:
elastic distributed system, modal control, piezoelectric transducer, identification
Downloads
Download data is not yet available.
References
Литература
1. Moheimani S.O.R., Fleming A.J. Piezoelectric transducers for vibэa,tion control and damping. Springer (2006).
2. Meirovitch L., Baruh H. Optimal control of damped flexible gyroscopic systems. Journal of Guidance, Control and Dynamics 4 (2), 157-163 (1981).
3. Baz A., Poh S. Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration 126 (2), 327-343 (1988).
4. Singh S.P., Pruthi H.S., Agarwal V.P. Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration 262 (3), 563-575 (2003). https://doi.org/10.1016/S0022- 460X(03)00111-1
5. Aldraihem O.J., Singh T., Wetherhold R.C. Optimal size and location of piezoelectric actuator/sensors: practical considerations. Journal of Guidance, Control and Dynamics 23 (3), 289-299 (2000). https://doi.org/10.2514/2.4557
6. Cinquemani S., Ferrari D., Bayati I. Reduction of spillover effects on independent modal space control through optimal placement of sensors and actuators. Smart Materials and Structures 24, 085006 (2015).
7. Bruant I., Coffignal G., Lene F. A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of Sound and Vibration 243 (5), 861-882 (2001). https://doi.org/10.1006/jsvi.2000.3448
8. Botta F., Dini D., Schwingshackl C., L. di Mare, Cerri G. Optimal placement of piezoelectric plates to control multimode vibrations of a beam. Advances in Acoustics and Vibration 2013, ID 905160 (2013). https://doi.org/10.1155/2013/905160
9. Botta F., Scorza A., Rossi A. Optimal piezoelectric potential distribution for controlling multimode vibrations. Applied Sciences 8 (4), 551 (2018). https://doi.org/10.3390/app8040551
10. Belyaev A.K., Fedotov A.V., Irschik H., Nader M., Polyanskiy V.A., Smirnova N.A. Experimental study of local and modal approaches to active vibration control of elastic systems. Structural Control and Health Monitoring 25 (8), e2105 (2017). https://doi.org/10.1002/stc.2105
11. Peukert C., Pohlmann P., Merx M., Muller J., Ihlenfeldt S. Investigation of local and modal based active vibration control strategies on the example of an elastic system. Journal of Machine Engineering 19 (2), 32-45 (2019). https://doi.org/10.5604/01.3001.0013.2222
12. Беляев А.К., Полянский В.А., Смирнова Н.А., Федотов А.В. Процедура идентификации при модальном управлении распределенным упругим объектом. Научно-технические ведомости СПбГПУ. Физико-математические науки 10 (2), 69-81 (2017). https://doi.org/10.18721/JPM.10207
References
1. Moheimani S.O.R., Fleming A.J. Piezoelectric transducers for vibэa,tion control and damping. Springer (2006).
2. Meirovitch L., Baruh H. Optimal control of damped flexible gyroscopic systems. Journal of Guidance, Control and Dynamics 4 (2), 157-163 (1981).
3. Baz A., Poh S. Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration 126 (2), 327-343 (1988).
4. Singh S.P., Pruthi H.S., Agarwal V.P. Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration 262 (3), 563-575 (2003). https://doi.org/10.1016/S0022- 460X(03)00111-1
5. Aldraihem O.J., Singh T., Wetherhold R.C. Optimal size and location of piezoelectric actuator/sensors: practical considerations. Journal of Guidance, Control and Dynamics 23 (3), 289-299 (2000). https://doi.org/10.2514/2.4557
6. Cinquemani S., Ferrari D., Bayati I. Reduction of spillover effects on independent modal space control through optimal placement of sensors and actuators. Smart Materials and Structures 24, 085006 (2015).
7. Bruant I., Coffignal G., Lene F. A methodology for determination of piezoelectric actuator and sensor location on beam structures. Journal of Sound and Vibration 243 (5), 861-882 (2001). https://doi.org/10.1006/jsvi.2000.3448
8. Botta F., Dini D., Schwingshackl C., L. di Mare, Cerri G. Optimal placement of piezoelectric plates to control multimode vibrations of a beam. Advances in Acoustics and Vibration 2013, ID 905160 (2013). https://doi.org/10.1155/2013/905160
9. Botta F., Scorza A., Rossi A. Optimal piezoelectric potential distribution for controlling multimode vibrations. Applied Sciences 8 (4), 551 (2018). https://doi.org/10.3390/app8040551
10. Belyaev A.K., Fedotov A.V., Irschik H., Nader M., Polyanskiy V.A., Smirnova N.A. Experimental study of local and modal approaches to active vibration control of elastic systems. Structural Control and Health Monitoring 25 (8), e2105 (2017). https://doi.org/10.1002/stc.2105
11. Peukert C., Pohlmann P., Merx M., Muller J., Ihlenfeldt S. Investigation of local and modal based active vibration control strategies on the example of an elastic system. Journal of Machine Engineering 19 (2), 32-45 (2019). https://doi.org/10.5604/01.3001.0013.2222
12. Belyaev A.K., Polyanskiy V.A., Smirnova N.A., Fedotov A.V. Identification procedure in the modal control of a distributed elastic system. St Petersburg Polytechnical State University. Journal Physics and Mathematics 10 (2), 69-81 (2017). https://doi.org/10.18721/JPM.10207
Downloads
Published
2022-12-26
How to Cite
Polyanskiy, V. A., & Smirnova, N. A. (2022). Control damping for elastic vibrations of a distributed system with the sensor - actuator overcharge. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9(4), 720–728. https://doi.org/10.21638/spbu01.2022.413
Issue
Section
Mechanics
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.