Dynamics of a double pendulum with viscous friction in the joints. I. Mathematical model of motion and construction of the regime diagram

Authors

  • Alexey S. Smirnov Peter the Great St. Petersburg Polytechnic University, 29, ul. Polytechnicheskaya, St. Petersburg, 195251, Russian Federation; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V. O., St. Petersburg, 199178, Russian Federation
  • Igor A. Kravchinskiy Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V. O., St. Petersburg, 199178, Russian Federation; LLC “Change Mobility Together”, 28/2, Bolshoy Sampsonievsky pr., St. Petersburg, 195277, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2024.210

Abstract

The paper discusses the dynamic behavior of a double mathematical pendulum with identical parameters of links and end loads, which is under the influence of viscous friction in both of its joints with generally different dissipative coefficients. A linear mathematical model of the system motion for small deviations is given, and a characteristic equation containing two dimensionless dissipative parameters is derived. For the case of low damping, approximate analytical expressions are found that make it possible to evaluate and compare with each other the damping factors during the motion of the system on each of the oscillation modes. A diagram of dissipative motion regimes is constructed, which arises when the plane of dimensionless parameters is divided by discriminant curves into regions with a qualitatively different character of the system motion. It is noted that a dissipative internal resonance can take place in the system under consideration, and the conditions for its existence in an analytical form are established, as well as their graphic illustration is also given. This article is the first part of the study of the dynamics of a dissipative double pendulum, the continuation of which will be presented as a separate work “Dynamics of a double pendulum with viscous friction in the joints. II. Dissipative oscillation modes and optimization of damping parameters”.

Keywords:

double pendulum, viscous damping, low friction, damping factor, discriminant curve, dissipative regime diagram, dissipative internal resonance

Downloads

Download data is not yet available.
 

References

Литература

1. ФормальскийА. М. Управление движением неустойчивых объектов. Москва, Физматлит (2014).

2. Перегудова О. А., Макаров Д. С. Синтез управления трехзвенным манипулятором. Автоматизация процессов управления 2 (40), 109-113 (2015).

3. Анохин Н. В. Приведение многозвенного маятника в положение равновесия с помощью одного управляющего момента. Известия РАН. Теория и системы управления 5, 44-53 (2013).

4. Смольников Б. А., Юревич Е. И. К проблеме биоморфного управления движениям роботов. Робототехника и техническая кибернетика 1 (6), 17-20 (2015).

5. Тяжелов А. А., Кизилова Н. Н., Фищенко В. А., Яремин С.Ю., КарпинскийМ.Ю., Карпинская Е. Д. Анализ стабилограмм на основе математической модели тела человека как многозвенной системы. Травма 13 (4), 17-25 (2012).

6. Sawant K. R., Shrikanth V. Energy dissipation and behavioral regimes in an autonomous double pendulum subjected to viscous and dry friction damping. European Journal of Physics 42 (5), 055008 (2021).

7. Bendersky S., Sandler B. Investigation of a spatial double pendulum: An engineering approach. Discrete Dynamics in Nature and Society 2006, 1-22 (2006).

8. Smirnov A. S., Smolnikov B. A. Dissipative Model of Double Mathematical Pendulum with Noncollinear Joints. Lecture Notes in Mechanical Engineering. Selected Contributions from the Conference “Modern Engineering: Science and Education”. St. Petersburg, Russia, June 2021, 38-47 (2022).

9. Бидерман В. Л. Теория механических колебаний. Москва, Высшая школа (1980).

10. Тимошенко С. П. Колебания в инженерном деле. Москва, Наука (1967).

11. Магнус К. Колебания: введение в исследование колебательных систем. Москва, Мир (1982).

12. Болотин В. В. (ред.). Вибрации в технике. Справочник. Т. 1. Колебания линейных систем. Москва, Машиностроение (1978).

13. Биргер И. А., Пановко Я. Г. (ред.). Прочность, устойчивость, колебания. Т. 3. Москва, Машиностроение (1968).

14. Леонтьев В. А., Смирнов А. С., Смольников Б. А. Оптимальное демпфирование колебаний двухзвенного манипулятора. Робототехника и техническая кибернетика 2 (19), 52-59 (2018).

15. Смирнов А. С., Смольников Б. А. Оптимизация режимов гашения колебаний пространственного двойного маятника. I. Постановка задачи. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 9 (67), вып. 2, 357-365 (2022). https://doi.org/10.21638/spbu01.2022.215

16. Смирнов А. С., Смольников Б. А. Оптимизация режимов гашения колебаний пространственного двойного маятника. II. Решение задачи и анализ результатов. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 10 (68), вып. 1, 121-138 (2023). https://doi.org/10.21638/spbu01.2023.111

17. Болотник Н. Н. Оптимизация амортизационных систем. Москва, Наука (1983).

18. Смольников Б. А. Проблемы механики и оптимизации роботов. Москва, Наука (1991).

19. Карман Т., Био М. Математические методы в инженерном деле. Москва; Ленинград, ГИТТЛ (1946).

20. Блехман И. И., Мышкис А. Д., Пановко Я. Г. Механика и прикладная математика. Логика и особенности приложенийматематики. Москва, Наука (1983). 21. Найфэ А. Введение в методы возмущений. Москва, Мир (1984).

21. Найфэ А. Введение в методы возмущений. Москва, Мир (1984).

References

1. Formalskii A. M. Motion control of unstable objects. Moscow, Fizmatlit Publ. (2014). (In Russian)

2. Peregudova O. A., Makarov D. S. Control synthesis for three-link manipulator. Automation of Control Processes 2 (40), 109-113 (2015). (In Russian)

3. Anokhin N. V. Bringing a multilink pendulum to the equilibrium position using a single control torque. Izvestiia RAN. Teoriia i sistemy upravleniia 5, 44-53 (2013). (In Russian) [Eng. transl.: Journal of Computer and Systems Sciences International 52 (5), 717-725 (2013)].

4. Smolnikov B. A., Yurevich E. I. About the problem of biomorphic robot motion control. Robotics and Technical Cybernetics 1 (6), 17-20 (2015). (In Russian)

5. Tyazhelov A. A., Kizilova N. N., Fischenko V. A., Yaremin S. Yu., Karpinsky M. Yu., Karpinskaya Ye. D. Analysis of posturography based on mathematical model of human body as multilink system. Travma 13 (4), 17-25 (2012). (In Russian)

6. Sawant K. R., Shrikanth V. Energy dissipation and behavioral regimes in an autonomous double pendulum subjected to viscous and dry friction damping. European Journal of Physics 42 (5), 055008 (2021).

7. Bendersky S., Sandler B. Investigation of a spatial double pendulum: An engineering approach. Discrete Dynamics in Nature and Society 2006, 1-22 (2006).

8. Smirnov A. S., Smolnikov B. A. Dissipative Model of Double Mathematical Pendulum with Noncollinear Joints. Lecture Notes in Mechanical Engineering. Selected Contributions from the Conference “Modern Engineering: Science and Education”. St. Petersburg, Russia, June 2021, 38-47 (2022).

9. Biderman V. L. Theory of mechanical oscillations. Мoscow, Vysshaya shkola Publ. (1980). (In Russian)

10. Timoshenko S. P. Vibration problems in engineering. Toronto; New York; London, D. Van Nostrand Company (1955) [Rus. ed.: Timoshenko S. P. Kolebaniya v inzhenernom dele. Moscow, Nauka Publ. (1967)].

11. Magnus K. Schwingungen. Eine Einf¨uhrung in die theoretische Behandlung von Schwingungsproblemen. Stuttgart, Teubner (1961) [Rus. ed.: Magnus K. Kolebaniia: vvedenie v issledovanie kolebatel’nykh sistem. Moscow, Mir Publ. (1982)].

12. Bolotin V. V. (ed). Vibrations in technology. Directory. Vol. 1. Oscillations of linear systems. Moscow, Mashinostroenie Publ. (1978). (In Russian)

13. Birger I. A., Panovko Ya. G. (eds). Strength, stability, oscillations. Vol. 3. Moscow, Mashinostroenie Publ. (1968). (In Russian)

14. Leontev V. A., Smirnov A. S., Smolnikov B. A. Optimal damping of two-link manipulator oscillations. Robotics and Technical Cybernetics 2 (19), 52-59 (2018). (In Russian)

15. Smirnov A. S., Smolnikov B. A. Optimization of oscillation damping modes of spatial doublependulum. I. Formulation of the problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 9 (67), iss. 2, 357-365 (2022). https://doi.org/10.21638/spbu01.2022.215 (In Russian) [Eng. transl.: Vestnik St. Petersburg University, Mathematics 55, iss. 2, 243-248 (2022).https://doi.org/10.21638/spbu01.2022.215].

16. Smirnov A. S., Smolnikov B. A. Optimization of oscillation damping modes of spatial double pendulum. II. Solving the problem and analyzing the results. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 10 (68), iss. 1, 121-138 (2023). https://doi.org/10.21638/spbu01.2023.111 (In Russian) [Eng. transl.: Vestnik St. Petersburg University. Mathematics 56, iss. 1, 93-106 (2023). https://doi.org/10.21638/spbu01.2023.111].

17. Bolotnik N. N. Optimization of amortization systems. Moscow, Nauka Publ. (1983). (In Russian)

18. Smolnikov B. A. Problems of mechanics and robotoptimization. Moscow, Nauka Publ. (1991). (In Russian)

19. Karman von Т., Biot M. A. Mathematical methods in engineering. New York, McGraw-Hill (1940) [Rus. ed.: Karman T., Bio M. Matematicheskie metody v inzhenernom dele. Moscow; Leningrad, GITTL Publ. (1946)].

20. Blekhman I. I., Myshkis A. D., Panovko Ya. G. Mechanics and applied mathematics. Logic and features of applications of mathematics. Moscow, Nauka Publ. (1983). (In Russian)

21. Nayfeh A. H. Introduction to perturbation techniques. New York, Chichester, Brisbane, Toronto, John Wiley & Sons (1981) [Rus. ed.: Nayfeh A. Vvedenie v metody vozmushchenii. Moscow, Mir Publ. (1984)].

Published

2024-08-10

How to Cite

Smirnov, A. S., & Kravchinskiy, I. A. (2024). Dynamics of a double pendulum with viscous friction in the joints. I. Mathematical model of motion and construction of the regime diagram. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11(2), 371–384. https://doi.org/10.21638/spbu01.2024.210

Issue

Section

Mechanics