On a quotient space of Keplerian orbits

Authors

DOI:

https://doi.org/10.21638/11701/spbu01.2020.116

Abstract

Several metrics were proposed during last 15 years which transform divers spaces of Keplerian orbits in metric ones. They are used to estimate a proximity of orbits of celestial bodies (usually comets, asteroids, and meteoroid complexes). An important role play quotient spaces. They allow us not to take into account those orbital elements which change in the secular mode under different perturbations. Three quotient spaces were just examined. Nodes are ignored in one of them; arguments of pericenters are ignored in the second one; both nodes and arguments of pericenters are ignored in the third one. Here, we introduce a fourth quotient space where orbits with arbitrary longitudes of nodes and arguments of
pericenters are identified under the condition that their sum (longitude of pericenter) is fixed. The function ̺6 serving as a distance between pointed classes of orbits, and satisfying first two axioms of metric spaces is determined. An algorithm of its calculation is proposed. In general the most complicated part of the algorithm represents the solution of a trigonometric equation of third degree. The question on the validity of the triangle axiom for ̺6, at least in a relaxed variant, will be examined later.

Keywords:

Keplerian orbit, metrics, quotient space of a metric space, distance between orbits

Downloads

Download data is not yet available.
 

References

Литература

Kholshevnikov K. V., Vassiliev N. N. Natural metrics in the spaces of elliptic orbits // Celest. Mech. Dyn. Astron. 2004. Vol. 89, no. 2. P. 119–125.

Kholshevnikov K. V. Metric Spaces of Keplerian Orbits // Celest. Mech. Dyn. Astron. 2008. Vol. 100, no. 3. P. 169–179.

Maruskin J. M. Distance in the space of energetically bounded Keplerian orbits // Celest. Mech. Dyn. Astron. 2010. Vol. 108, no. 3. P. 265–274.

Холшевников К. В. О метриках в пространствах кеплеровских орбит // Физика космоса: Труды 45-й международной студ. науч. конф., Екатеринбург, 1–5 февраля 2016 г. Екатеринбург: Изд-во УрФУ, 2016. C. 168–184.

Kholshevnikov K. V., Kokhirova G. I., Babadzhanov P. B., Khamroev U. H. Metrics in the space of orbits and their application to searching for celestial objects of common origin // MNRAS. 2016.Vol. 462, no. 2. P. 2275–2283.

Кузнецов Э. Д., Сафронова В. С. Приложение метрик пространства кеплеровых орбит для поиска астероидов на близких орбитах // Экологический вестник научных центров Черноморского экономического сотрудничества. 2017. № 4. Вып. 2. С. 86–92.

Kuznetsov E., Safronova V. Application of metrics in the space of orbits to search for asteroids on close orbits // Planetary and Space Science. 2018. Vol. 157. P. 22–27.

Milanov D. V. Metrics in Keplerian orbits quotient spaces // Celest. Mech. Dyn. Astron. 2018. Vol. 130. P. 27. https://doi.org/10.1007/s10569-018-9820-1

Southworth R., Hawkins G. Statistics of meteor streams // Smithson. Contrib. Astrophys. 1963. Vol. 7. P. 261–285.

Drummond J. D. On meteor/comet orbital discriminant D // Proc. Southwest Regional Conf. Astron. Astrophys. / Eds. P. F. Gott, P. S. Riherd. Little Rock AR, 1979. Vol. 5. P. 83–86.

Drummond J. D. A test of comet and meteor shower associations // Icarus. 1981. Vol. 45. P. 545–553.

Jopek T. J. Remarks on the Meteor Orbital Similarity D-Criterion // Icarus. 1993. Vol. 106, no. 2. P. 603–607.

Klaˇcka J. Meteor Stream Membership Criteria. 2000. arXiv:astro-ph/0005509v1

Jopek T. J., Froeschl´e Cl. A stream search among 502 TV meteor orbits. An objective approach // Astron. Astrophys. 1997. Vol. 320, no. 2. P. 631–641.

Valsecchi G. B., Jopek T. J., Froeschl´e Cl. Meteoroid stream identification: a new approach — I. Theory // Mon. Notic. Roy. Astron. Soc. 1999. Vol. 304, no. 4. P. 743–750.

Калинин Д. А. О критериях общности в кометных метеороидных комплексах // Известия вузов. Геодезия и аэрофотосъемка. 2013. Вып. 5. С. 3–9.

Milanov D. V., Milanova Yu. V., Kholshevnikov K. V. Relaxed triangle inequality for the orbital similarity criterion by Southworth and Hawkins and its variants // Celest. Mech. Dyn. Astron. 2019. Vol. 131, no. 1. Art. no. 5. https://doi.org/10.1007/s10569-019-9884-6

Хаусдорф Ф. Теория множеств. М.: КомКнига, 2006.

Бураго Д.Ю., Бураго Ю. Д., Иванов С. В. Курс метрической геометрии. М.; Ижевск: Изд. ИКИ, 2004.

Корн Г., Корн Т. Справочник по математике. М.: Наука, 1984.

The Collision of Comet P/Shoemaker — Levy 9 and Jupiter / Eds. K. S. Noll, H. A. Weaver, P. D. Feldman. Cambridge: Cambridge Univ. Press, 2006.

Аллен К. У. Астрофизические величины. М.: Мир, 1977.

References

Kholshevnikov K. V., Vassiliev N. N., “Natural metrics in the spaces of elliptic orbits”, Celest. Mech. Dyn. Astron. 89(2), 119–125 (2004).

Kholshevnikov K. V., “Metric Spaces of Keplerian Orbits”, Celest. Mech. Dyn. Astron. 100(3), 169–179 (2008).

Maruskin J. M., “Distance in the space of energetically bounded Keplerian orbits”, Celest. Mech. Dyn. Astron. 108(3), 265–274 (2010).

Kholshevnikov K. V., “On metrics in the space of Keplerian orbits”, “Physics of Space”: Proceedings of the 45th International. stud. sci. conference, Yekaterinburg, 1–5 February, 2016, 168–185 (Yekaterinburg, 2016). (In Russian)

Kholshevnikov K. V., Kokhirova G. I., Babadzhanov P. B., Khamroev U. H., “Metrics in the space of orbits and their application to searching for celestial objects of common origin”, Mon. Notic. Roy. Astron. Soc. 462(2), 2275–2283 (2016).

Kuznetsov E. D., Safronova V. S., “Using of metrics in the space of orbits to searching for asteroids on close orbits”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation (4), issue 2, 86–92 (2017). (In Russian)

Kuznetsov E., Safronova V., “Application of metrics in the space of orbits to search for asteroids on close orbits”, Planetary and Space Science 157, 22–27 (2018).

Milanov D. V., “Metrics in Keplerian orbits quotient spaces”, Celest. Mech. Dyn. Astron. 130, 27 (2018). https://doi.org/10.1007/s10569-018-9820-1

Southworth R., Hawkins G., “Statistics of meteor streams”, Smithson. Contrib. Astrophys. 7, 261–285 (1963).

Drummond J. D., “On meteor/comet orbital discriminant D”, Proc. Southwest Regional Conf. Astron. Astrophys. 5, 83–86 (P. F. Gott, P. S. Riherd (eds.), Little Rock AR, 1979).

Drummond J. D., “A test of comet and meteor shower associations”, Icarus 45, 545–553 (1981).

Jopek T. J., “Remarks on the Meteor Orbital Similarity D-Criterion”, Icarus 106(2), 603–607 (1993).

Klaˇcka J., “Meteor Stream Membership Criteria”, arXiv:astro-ph/0005509v1 (2000).

Jopek T. J., Froeschl´e Cl., “A stream search among 502 TV meteor orbits. An objective approach”, Astron. Astrophys. 320(2), 631–641 (1997).

Valsecchi G. B., Jopek T. J., Froeschl´e Cl., “Meteoroid stream identification: a new approach — I. Theory”, Mon. Notic. Roy. Astron. Soc. 304(4), 743–750 (1999).

Kalinin D. A., “On similarity criteria in comet and meteoroid complexes”, Izvestia vuzov. Geodesy and aerial survey 3, 3–9 (2005). (In Russian)

Milanov D. V., Milanova Yu. V., Kholshevnikov K. V., “Relaxed triangle inequality for the orbital similarity criterion by Southworth and Hawkins and its variants”, Celest. Mech. Dyn. Astron. 131(1), 5 (2019). https://doi.org/10.1007/s10569-019-9884-6

Hausdorff F., Set Theory (AMS Chelsea Publishing, 2005).

Burago D. Y., Burago Y. D., Ivanov S. V., A Сourse in Metric Geometry, in Ser.: Graduate Studies of Mathematics 33 (AMS, 2001).

Korn G., Korn T., Mathematical handbook for scientists and engineers (Courier Corporation, 2013).

The Collision of Comet P/Shoemaker — Levy 9 and Jupiter (K. S. Noll, H. A.Weaver, P. D. Feldman (eds.), Cambridge Univ. Press, Cambridge, 2006).

Allen’s Astrophysical Quantities (4th ed., A. N. Cox (ed.), Springer, 1999).

Published

2020-05-13

How to Cite

Kholshevnikov, K. V., Shchepalova, A. S., & Jazmati, M. S. (2020). On a quotient space of Keplerian orbits. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(1), 165–174. https://doi.org/10.21638/11701/spbu01.2020.116

Issue

Section

Astronomy

Most read articles by the same author(s)

1 2 > >>