Справедлива ли теорема Якоби в однократно осредненной ограниченной круговой задаче трех тел?
DOI:
https://doi.org/10.21638/spbu01.2021.116Аннотация
К.Якоби установлено, что в общей задаче N (и, в частности, трех) тел для устойчивости по Лагранжу какого-либо решения необходима отрицательность полной энергии системы. Для ограниченной задачи трех тел это утверждение тривиально, поскольку тело нулевой массы вносит нулевой вклад в энергию системы. Если рассматривать лишь уравнения, описывающие движение точки нулевой массы, то исчезает интеграл энергии. Однако если осреднить уравнения по долготам главных тел, интеграл энергии снова появляется. Справедлива ли в этом случае теорема Якоби? Оказалось, что нет. Для сколь угодно больших значений полной энергии существуют ограниченные периодические орбиты. В то же время отрицательности энергии оказалось достаточно для ограниченности орбиты в конфигурационном пространстве.Ключевые слова:
ограниченная круговая задача трех тел, теорема Якоби об устойчивости, осреднение
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.