Условия локальной параметрической идентифицируемости для систем дифференциальных уравнений с бесконечномерным параметром
DOI:
https://doi.org/10.21638/spbu01.2023.411Аннотация
Задача о параметрической идентификации (определении параметров системы по наблюдению решений или функций от них) - одна из основных задач прикладной теории дифференциальных уравнений. При решении этой задачи важнейшую роль играет свойство локальной идентифицируемости. Наличие такого свойства означает, что по наблюдению решений можно однозначно определить значение параметров системы в окрестности выделенного параметра. Ранее в этой задаче в основном изучался случай конечномерного параметра. Задача о локальной параметрической идентифицируемости в случае бесконечномерного параметра изучена гораздо меньше. В данной работе предлагается новый метод получения достаточных условий локальной параметрической идентифицируемости в случае бесконечномерного параметра. При выполнении этих условий бесконечномерный параметр, принадлежащий определенным классам, локально идентифицируется по наблюдению решения на конечном наборе точек. Для систем с линейной зависимостью от параметра установлена типичность выполнения указанных условий.
Ключевые слова:
дифференциальное уравнение, локальная параметрическая идентифицируемость, типичность
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.