Решение задачи о размещении двух объектов в пространстве с метрикой Чебышёва
DOI:
https://doi.org/10.21638/spbu01.2022.405Аннотация
Рассматривается минимаксная задача о размещении двух объектов в многомерном пространстве с метрикой Чебышёва при наличии интервальных ограничений на допустимую область размещения. В задаче имеются две группы объектов с заданными координатами и требуется найти координаты оптимального размещения двух новых объектов с учетом заданных ограничений. Размещение новых объектов считается оптимальным, если оно минимизирует максимум следующих величин: расстояние от первого объекта до самого удаленного от него объекта из первой группы имеющихся объектов, расстояние от второго объекта до самого удаленного объекта из второй группы, а также расстояние между первым и вторым новыми объектами. Задача размещения формулируется как задача многомерной оптимизации в терминах тропической математики, которая изучает теорию и приложения алгебраических систем с идемпотентными операциями. На основе использования методов и результатов тропической оптимизации найдено прямое аналитическое решение задачи. Получен результат, который описывает область оптимального размещения новых объектов в параметрической форме, удобной для формального анализа решения и непосредственных вычислений.Ключевые слова:
тропическая оптимизация, идемпотентное полуполе, минимаксная задача оптимизации, задача о размещении двух объектов
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.