Cвязанные колебания вязкоупругих трехслойных композитных пластин. 1. Постановка задачи
DOI:
https://doi.org/10.21638/spbu01.2020.309Аннотация
Предложена математическая модель затухающих колебаний трехслойных пластин, образованных двумя жесткими анизотропными слоями и мягким средним изотропным слоем из вязкоупругого полимера. Модель строится на основе вариационного принципа Гамильтона, уточненной теории пластин первого порядка, модели комплексных модулей и принципа упруго-вязкоупругого соответствия в линейной теории вязкоупругости. Считается, что для материалов жестких слоев температурно-частотная зависимость упруго-диссипативных характеристик пренебрежимо мала, в то время как для вязкоупругого полимера мягкого слоя эта зависимость учтена. Минимизация функционала Гамильтона позволяет свести задачу о затухающих колебаниях анизотропных конструкций к алгебраической проблеме комплексных собственных значений. Для формирования системы алгебраических уравнений применяется метод Ритца с использованием многочленов Лежандра в качестве координатных функций. Сначала находятся вещественные решения. Для определения комплексных собственных частот пластины в качестве их начальных значений используются найденные вещественные собственные частоты, а затем вычисляются комплексные частоты методом итераций третьего порядка. Обсуждаются результаты исследования сходимости численного решения. Приводится оценка достоверности математической модели и метода численного решения, выполненная путем сопоставления расчетных и экспериментальных значений собственных частот и коэффициентов механических потерь.
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.