Строение отделимых алгебр Дынкина
Аннотация
В статье изучаются абстрактные алгебры Дынкина. Такие алгебры образуют полезный инструмент для обсуждения вероятностей в достаточно естественном контексте. Абстрактность означает отсутствие теоретико-множественной структуры элементов таких алгебр. Вводится полезный широкий класс абстрактных алгебр - отделимые алгебры Дынкина и указывается простейший пример неотделимой алгебры. Свойство отделимости позволяет определить подходящие варианты булевых версий операций пересечения и объединения элементов. Такие операции в общем случае определены только частично. Доказываются некоторые свойства отделимых алгебр, которые используются для получения стандартных свойств пересечения и объединения, включая ассоциативность и дистрибутивность, в случае, когда соответствующие операции применимы. Установленные факты позволяют определить булевы подалгебры в отделимой алгебре Дынкина и проверить совпадение нашей версии определения с обычной.Наконец, формулируется и доказывается основной результат о строении отделимых алгебр Дынкина, которые представляются как теоретико-множественное объединение максимальных булевых подалгебр. После ранее проведенной подготовки проводится доказательство при помощи стандартного применения леммы Цорна. Библиогр. 6 назв.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.