On generalizations of the optimal choice problem

Authors

  • Igor V. Belkov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.103

Abstract

The article is dedicated to some generalizations of the classical optimal choice problem (the fastidious bride problem, the secretary problem). Let there be a sequence of n identically distributed random variables on the interval [0, 1]. Getting consistently observed values of these variables, we should stop at some moment on one of them, accepting it as the initial point for counting upper or lower record values. In the optimal choice problem and its generalizations, it is needed to make the correct choice of the initial point of counting records, in order to guess the place of the last record (the classical optimal choice problem) or to maximize the expected sum of upper and/or lower record values or the expected total number of upper and/or lower records, obtained by this procedure. A review of results on the uniform distribution of the random variables and some new results concerning the exponential distribution are presented.

Keywords:

record moments, record values, sums of record values, mean number of records, uniform distribution, exponential distribution, optimal choice problem

Downloads

Download data is not yet available.
 

References

Литература

1. Gardner M. Mathematical Games. A fifth collection of “brain-teasers”. Scientific American 202 (2), 150–154 (1960).

2. Дынкин Е.Б. Оптимальный выбор момента остановки процесса. Докл. АН СССР 150 (2), 238–240 (1963).

3. Невзоров В.Б., Товмасян С.А. О максимальном значении среднего числа рекордов. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия 1 (59), вып. 2, 196–200 (2014).

4. Бельков И.В., Невзоров В.Б. Об одной проблеме оптимального выбора рекордных величин. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия 5 (63), вып. 2, 179–188 (2018). https://doi.org/10.21638/11701/spbu01.2018.201

5. Бельков И.В., Невзоров В.Б. Об одной задаче оптимального выбора рекордных величин. Записки научн. сем. ПОМИ 466, 30–37 (2017).

6. Бельков И.В. О некоторых задачах оптимального выбора рекордных величин. Научный журнал Globus, вып. 11 (44), 46–49 (2019).

References

1. Gardner M. Mathematical Games. A fifth collection of “brain-teasers”. Scientific American 202 (2), 150–154 (1960).

2. Dynkin E.B. Optimal choice of the stopping time of a Markov process. Dokl. Akad. Nauk SSSR 150 (2), 238–240 (1963). (In Russian) [Engl. transl.: Soviet Math. Dokl. 4, 627–629 (1963)].

3. Nevzorov V.B., Tovmasyan S.A. On the maximal value of the expectation of record numbers. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy 1 (59), iss. 2, 196–200 (2014). (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 47, iss. 2, 64–67 (2014). https://doi.org/10.3103/S1063454114020046].

4. Belkov I.V., Nevzorov V.B. On the problem of the optimal choice of record values. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 5 (63), iss. 2, 179–188 (2018). https://doi.org/10.21638/11701/spbu01.2018.201 (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 51, iss. 2, 107–113 (2018). https://doi.org/10.3103/S1063454118020024].

5. Belkov I.V., Nevzorov V.B. On one problem of the optimal choice of record values. Zap. Nauchn. Sem. POMI 466, 30–37 (2017). (In Russian) [Engl. transl.: J. Math. Sci. 244, 718–722 (2020). https://doi.org/10.1007/s10958-020-04644-0].

6. Belkov I.V. About some tasks of optimal selection of record values. Scientific journal “Globus”, iss. 11 (44), 46–49 (2019). (In Russian)

Published

2021-05-29

How to Cite

Belkov, I. V. (2021). On generalizations of the optimal choice problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(1), 29–36. https://doi.org/10.21638/spbu01.2021.103

Issue

Section

Mathematics