Buckling of the cylindrical shell joint with annular plates under external pressure

Authors

  • Sergei B. Filippov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.208

Abstract

By means of an asymptotic method the buckling under the uniform external pressure of the thin cylindrical shell supported by identical annular plates is analyzed. Boundary conditions on an internal parallel of the shell joined to a thin plate are obtained. At the edges of the shell the free support conditions are introduced. We seek the approximate solutions of the eigenvalue problem as a sum of slowly varying functions and edge effect integrals. On a parallel, where the plate joint with the shell, the main boundary conditions for the formulation of an eigenvalue problem of zero approximation are obtained. This problem describes also vibrations of a simply supported beam stiffened by springs. Its solution we seek as linear combinations of Krylov’s functions. It is shown, that in zero approximation it is possible to replace a narrow plate with a circular beam. At increase in width of a plate stiffness of the corresponding spring tend to a constant. It occurs because of localization plate deformations near to the internal edge of a plate. As an example the dimensionless critical pressure for the case when the shell is supported by one plate is found. The replacement of a narrow plate with a circular beam does not lead to appreciable change of the critical pressure, however for a wide plate the beam model gives the overestimated value of critical pressure.

Keywords:

ring-stiffened cylindrical shell, buckling, annular plate, asymptotic method, eigenvalue problem

Downloads

Download data is not yet available.
 

References

Литература

1. Маневич А.И. Устойчивость и оптимальное проектирование подкрепленных оболочек. Киев, Донецк, Вища школа (1979).

2. Андрианов И.В., Лесничая В.А., Маневич Л.И. Метод усреднения в статике и динамике ребристых оболочек. Москва, Наука (1985).

3. Амиро И.Я., Грачев О.А., Заруцкий В.А., Пальчевский А.С., Санников Ю.А. Устойчивость ребристых оболочек вращения. Киев, Наукова думка (1987).

4. Филиппов С.Б. Теория сопряженных и подкрепленных оболочек. Санкт-Петербург, Изд-во С.-Петерб. ун-та (1999).

5. Teng J.G., Rotter J.M. Buckling of Thin Metal Shell. CRC Press (2004).

6. Wang C.M., Swaddiwudhipohg S. Elastic buckling analysis of ring-stiffened cylindrical shell under general pressure loading via the Ritz method. Thin-Walled Structures 35, 1–24 (1999).

7. Filippov S.B. Optimal design of stiffened cylindrical shells based on an asymptotic approach. Technishe Mechanik 24, 221–230 (2004).

8. Dai H. L., Qi L. L., Zheng H.Y. Buckling analysis for a ring-stiffened FGM cylindrical shell under hydrostatic pressure and thermal loads. Journal of Mechanics 30, 403–410 (2014).

9. Макаренко И.Н., Филиппов С.Б. Устойчивость цилиндрической оболочки, подкрепленной кольцевой пластиной. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия, вып. 1, 94–102 (2005).

10. Кобченко М.Е., Филиппов С.Б. Устойчивость цилиндрической оболочки, сопряженной с кольцевой пластиной под действием внешнего давления. В: Асимптотические методы в механике деформируемого твердого тела. Санкт-Петербург, ВВМ, 60–74 (2006).

11. Товстик П.Е. Устойчивость тонких оболочек. Асимптотические методы. Москва, Наука (1995).

12. Тимошенко С.П., Янг Д.Х., Уивер У. Колебания в инженерном деле, пер. с англ. Москва, Машиностроение (1985).

13. Filippov S.B., Sabaneev V.S. Buckling of Cylindrical Shell Stiffened by Annular Plate Under External Pressure. In: Advanced Structured Materials, vol. 110, 251–270. Springer (2019). https://doi.org/10.1007/978-3-030-17747-8_14

References

1. Manevich A.I. Buckling and optimal designing of stiffened shells. Kiev, Donetsk, Vischa shkola Publ. (1979). (In Russian)

2. Andrianov I.V., Lesnichaya V.A., Manevich L. I. Homogenization method in static and dynamic of ribbed shells. Moscow, Nauka Publ. (1985). (In Russian)

3. Amiro I.Ya., Grachev O.A., Zarutsky V.A., Pal’chevskii A. S., Sannikov Iu.A. Buckling of ribbed shells of revolution. Kiev, Naukova dumka Publ. (1987). (In Russian)

4. Filippov S.B. Theory of joined and stiffened shells. St. Petersburg, St. Petersb. Univ. Press (1999). (In Russian)

5. Teng J.G., Rotter J.M. Buckling of Thin Metal Shell. CRC Press (2004).

6. Wang C.M., Swaddiwudhipohg S. Elastic buckling analysis of ring-stiffened cylindrical shell under general pressure loading via the Ritz method. Thin-Walled Structures 35, 1–24 (1999).

7. Filippov S.B. Optimal design of stiffened cylindrical shells based on an asymptotic approach. Technishe Mechanik 24, 221–230 (2004).

8. Dai H. L., Qi L. L., Zheng H.Y. Buckling analysis for a ring-stiffened FGM cylindrical shell under hydrostatic pressure and thermal loads. Journal of Mechanics 30, 403–410 (2014).

9. Makarenko I.N., Filippov S.B. Buckling of cylindrical shell stiffened by annular plate. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy 50 (1), 94–102 (2005). (In Russian)

10. Kobchenko M.E., Filippov S.B. Buckling of cylindrical shell, joined with annular plate under external pressure. In: Asymptotic methods in deformable solid mechanics, St. Petersburg, BBM Publ., 60–74 (2006). (In Russian)

11. Tovstik P.E. Buckling of thin shells. Asymptotic methods. Moscow, Nauka Publ. (1995). (In Russian)

12. Weaver W. Jr., Timoshenko S.P., Yang D.H. Vibration problems in engineering. Wiley (1990). [Russ. ed.: Timoshenko S. P., Yang D.H., Weaver W. Jr. Kolebaniia v inzhenernom dele. Moscow, Mashinostroenie Publ. (1985)].

13. Filippov S.B., Sabaneev V.S. Buckling of Cylindrical Shell Stiffened by Annular Plate Under External Pressure. In: Advanced Structured Materials, vol. 110, 251–270. Springer (2019). https://doi.org/10.1007/978-3-030-17747-8_14

Published

2021-07-21

How to Cite

Filippov, S. B. (2021). Buckling of the cylindrical shell joint with annular plates under external pressure. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(2), 282–294. https://doi.org/10.21638/spbu01.2021.208

Issue

Section

In memoriam of P. E. Tovstik