Nonclassical vibrations of a monoclinic composite strip

Authors

  • Victor M. Ryabov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Boris A. Yartsev Krylov State Research Center, 44, Moskovskoye shosse, St. Petersburg, 196158, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.415

Abstract

A mathematical model of damped flexural-torsional vibrations of monoclinic composite strip of constant length rectangular cross section is proposed. The model is based on the refined bending theory Timoshenko beams, the theory of generalized Voigt - Lekhnitskii torsion and the elastic-viscoelastic correspondence principle in the linear theory of viscoelasticity. A two-stage method for solving a coupled system of differential equations is developed. First, using the Laplace transform in spatial variable, real natural frequencies and natural forms are found. To determine the complex natural frequencies of the strip in found real values are used as their initial values of natural frequencies, and then the complex frequencies are calculated by the method iterations of the third order. An assessment of the reliability of the mathematical model and method of numerical solution, performed by comparing calculated and experimental values of natural frequencies and loss factors is given. The results of a numerical study of the effect angles of orientation of reinforcing fibers and lengths by the values of natural frequencies and loss factors for free-free and cantilever monoclinic stripes are discussed. It is shown that for the free-free strip the region of mutual transformation eigenmodes of coupled vibration modes arise for quasi-bending and quasi-twisting vibrations of either even or odd tones. In the console strip of the region of mutual transformation of eigenforms of coupled modes vibrations occur for both even and odd tones.

Keywords:

composite, monoclinic strip, coupled vibrations, natural frequency, loss factor

Downloads

Download data is not yet available.
 

References

Литература

1. Daynes S., Weaver P.M. Review Stiffness tailoring using prestress in adaptive composite structures. Composite Structures 106, 282–287 (2013).

2. Georghiades G.A., Banerjee J.R. A parametric investigation into the flutter characteristics of composite wings. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural Dynamics and Materials Conference. A Collection of Technical Papers. Part 1. April 15–17, 1996, 300–310 (1996).

3. Hayat K., de Lecea A.G.M., Moriones C.D., Ha S.K. Flutter performance of bend-twist coupled large-scale wind turbine blades. Journal of Sound and Vibration 370, 149–162 (2016).

4. Li W., Zhou H., Liu H., Lin Y., Xu Q. Review on the blade design technologies of tidal current turbine. Renewable and Sustainable Energy Reviews 63, 414–422 (2016).

5. Azzam A., Li W. Theoretical and experimental methods on bend-twist coupling and damping properties with the relationship to lay-up of the composite propeller marine: A review. International Journal of Engineering Science and Technology 4 (6), 2907–2917 (2012).

6. Maljaars P.J., Kaminski M.L. Hydro-elastic analysis of flexible propellers: An overview. Fourth International Symposium on Marine Propulsors. Austin (Texas, USA) (2015).

7. Рябов В.М., Ярцев Б.А. Итерационныйметод определения упругих и диссипативных характеристик полимерных композиционных материалов. Часть I. Теоретические основы. Вопросы материаловедения, вып. 2 (22), 55–61 (2000).

8. Рябов В.М., Ярцев Б.А. Итерационныйметод определения упругих и диссипативных характеристик полимерных композиционных материалов. Часть II. Минимизация экспериментальных погрешностей. Вопросы материаловедения, вып. 2 (22), 61–70 (2000).

9. Рябов В.М., Ярцев Б.А. Итерационныйметод определения упругих и диссипативных характеристик полимерных композиционных материалов. Часть III. Экспериментальная проверка. Вопросы материаловедения, вып. 2 (22), 70–76 (2000).

10. Abarcar R.В., Cuniff P.E. The vibration of cantilever beams of fibre reinforced material. Journal of Composite Materials 6 (10), 504–517 (1972).

11. Ritchie I.G., Rosinger H.E., Fleury W.H. The dynamic elastic behavior of a fibrereinforced composite sheet: II. The transfer matrix calculation of the resonant frequencies and vibration shapes. Journal of Physics D: Applied Physics 8 (15), 1750–1786 (1975).

12. Miller A.K., Adams D.F. An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams. Journal of Sound Vibration 41, 433–449 (1975).

13. Suresh J.K., Venkastensan C. Structural dynamic analysis of composite beams. Journal of Sound Vibration 143, 503–519 (1990).

14. Li J., Wang S., Li X., Kong X., Wu W. Modeling the coupled bending-torsional vibrations of symmetric laminated composite beams. Archive Applied Mechanics 85, 991–1007 (2015).

15. Тимошенко С.П. К учету сдвига в дифференциальном уравнении поперечных колебаний призматических стержней. В: Статические и динамические проблемы теории упругости, 56–57. Киев, Наукова Думка (1975).

16. Voigt W. Lehrbuch der Kristallphysik. Leipzig, Berlin, Teubner (1928).

17. Лехницкий С.Г. Теория упругости анизотропного тела. Москва, Наука (1977).

18. Мейз Дж. Теория и задачи механики сплошных сред, пер. с англ. Москва, Либроком (2010).

19. Кристенсен Р. Введение в теорию вязкоупругости. Москва, Мир (1974).

20. Березин И.С., Жидков Н.П. Методы вычислений. Т. 2. Москва, Физматлит (1962).

References

1. Daynes S., Weaver P.M. Review Stiffness tailoring using prestress in adaptive composite structures. Composite Structures 106, 282–287 (2013).

2. Georghiades G.A., Banerjee J.R. A parametric investigation into the flutter characteristics of composite wings. Proceedings of the AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural Dynamics and Materials Conference. A Collection of Technical Papers. Part 1. April 15–17, 1996, 300–310 (1996).

3. Hayat K., de Lecea A.G.M., Moriones C.D., Ha S.K. Flutter performance of bend-twist coupled large-scale wind turbine blades. Journal of Sound and Vibration 370, 149–162 (2016).

4. Li W., Zhou H., Liu H., Lin Y., Xu Q. Review on the blade design technologies of tidal current turbine. Renewable and Sustainable Energy Reviews 63, 414–422 (2016).

5. Azzam A., Li W. Theoretical and experimental methods on bend-twist coupling and damping properties with the relationship to lay-up of the composite propeller marine: A review. International Journal of Engineering Science and Technology 4 (6), 2907–2917 (2012).

6. Maljaars P.J., Kaminski M.L. Hydro-elastic analysis of flexible propellers: An overview. Fourth International Symposium on Marine Propulsors. Austin (Texas, USA) (2015).

7. Ryabov V.M., Yartsev B.A. An iterative method for determining elastic and dissipative characteristics of polymer composite materials. Part I. Theoretical foundations. Problems of materials science, iss. 2 (22), 55–61 (2000). (In Russian)

8. Ryabov V.M., Yartsev B.A. An iterative method for determining elastic and dissipative characteristics of polymer composite materials. Part II. Minimization of experimental errors. Problems of materials science, iss. 2 (22), 61–70 (2000). (In Russian)

9. Ryabov V.M., Yartsev B.A. An iterative method for determining elastic and dissipative characteristics of polymer composite materials. Part III. Experimental verification. Problems of materials science, iss. 2 (22), 70–78 (2000). (In Russian)

10. Abarcar R.В., Cuniff P.E. The vibration of cantilever beams of fibre reinforced material. Journal of Composite Materials 6 (10), 504–517 (1972).

11. Ritchie I.G., Rosinger H.E., Fleury W.H. The dynamic elastic behavior of a fibrereinforced composite sheet: II. The transfer matrix calculation of the resonant frequencies and vibration shapes. Journal of Physics D: Applied Physics 8 (15), 1750–1786 (1975).

12. Miller A.K., Adams D.F. An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams. Journal of Sound Vibration 41, 433–449 (1975).

13. Suresh J.K., Venkastensan C. Structural dynamic analysis of composite beams. Journal of Sound Vibration 143, 503–519 (1990).

14. Li J., Wang S., Li X., Kong X., Wu W. Modeling the coupled bending-torsional vibrations of symmetric laminated composite beams. Archive Applied Mechanics 85, 991–1007 (2015).

15. Timoshenko S.P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. In: Static and dynamic problems of elasticity theory, 56–57. Kiev, Naukova Dumka Publ. (1975). (In Russian)

16. Voigt W. Lehrbuch der Kristallphysik. Leipzig, Berlin, Teubner (1928).

17. Lekhnitskii S.G. Theory of elasticity of an anisotropic elastic body. Moscow, Mir Publ. (1981). (In Russian)

18. Mase G.E. Theory and problems of continuum mechanics. In Ser.: Schaum’s Outline Series. New York, Mcgraw-Hill Book Company (1970). [Russ. ed.: Mase G. E. Teoriia i zadachi mekhaniki sploshnykh sred. Moscow, Librokom Publ. (2010)].

19. Christensen R.M. Vvedenie v teoriiu viazkouprugosti. Moscow, Mir Publ. (1974). (In Russian) [Engl. transl.: Christensen R. M. Theory of viscoelasticity. New York, Academic Press (1971)].

20. Berezin I.S., Zhidkov N.P. Methods of computations. Vol. 2. Moscow, Fizmatliz Publ. (In Russian)

Published

2022-01-04

How to Cite

Ryabov, V. M., & Yartsev, B. A. (2022). Nonclassical vibrations of a monoclinic composite strip. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(4), 695–708. https://doi.org/10.21638/spbu01.2021.415

Issue

Section

Mechanics