Energy exchange rate coefficients in modeling carbon dioxide kinetics: calculation optimization

Authors

  • Viacheslav I. Gorikhovskii St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-3674-9238
  • Ekaterina A. Nagnibeda St. Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu01.2019.411

Abstract

Algorithms for calculation of vibrational energy exchange rate coefficients at the collisions of carbon dioxide molecules are considered in the paper. For numerical modeling of CO2 vibrational kinetics in the state-to-state approach, it is necessary to solve a system of differential equations for level populations of three vibrational CO2 modes at each step of calculations; the number of these equations is about several thousands. Right hand sides of these equations contain hundreds of thousands of energy exchange rate coefficients. From the numerical point of view, this modeling relates to the Big Data and requires developing rapid numerical methods or pre-calculations. Such amount of data also requires providing a fast data access. Up to the present time, for the state-to-state description of CO2 vibrational relaxation, only simplified kinetic schemes were used with limited number of vibrational levels and energy transitions. In the present paper, the problem is solved in the complete formulation. The complete sets of CO2 vibrational levels and energy transitions are taken into account. The effective scheme for calculation of vibrational energy exchange rate coefficients is proposed on the basis of parallel computations and code optimization as well as the optimal data structure for their storage.

Keywords:

vibrational kinetics, carbon dioxide, state-to-state approach, optimization of numerical calculations

Downloads

Download data is not yet available.
 

References

Литература

Гордиец Б.Ф., Осипов А.И., Шелепин Л.А. Кинетические процессы в газах и молекулярные лазеры. М.: Наука, 1980.

Park C., Howe J.T., Howe R.L. Review of Chemical Kinetic Problems of Future NASA Missions, II: Mars Entries // J. Thermophys. Heat Transfer. 1994. Т. 8, №1. С. 9–23. https://doi.org/10.2514/3.496

Шевелев Ю.Д., Сызранова Н.Г., Кустова Е.В., Нагнибеда Е.А. Численное моделирование гиперзвуковых потоков около космических аппаратов при спуске в атмосферу Марса // Мат. моделирование. 2010. Т. 22, №9. С. 23–50.

Kustova E.V., Nagnibeda E.A., Armenise I. Vibrational-Chemical Kinetics in Mars Entry Problems // The Open Plasma Physics Journal. 2014. Vol. 7, N Suppl 1: M5. P. 76–87. https://doi.org/10.2174/1876534301407010076

Kustova E.V., Nagnibeda E.A. State-to-State Theory of Vibrational Kinetics and Dissociation in Three-Atomic Gases // Rarefied Gas Dynamics. AIP Conference Proceedings / eds. T. Bartel, M.Gallis. 2001. Vol. 585. P. 620–627. https://doi.org/10.1063/1.1407618

Armenise I., Kustova E.V. State-to-State Models for CO2 Molecules: from the Theory to an Application to Hypersonic Boundary Layers // Chem. Phys. 2013. Vol. 415. P. 269–281. https://doi.org/10.1016/j.chemphys.2013.01.034

Kustova E.V., Nagnibeda E.A. Kinetic model for multi-temperature flows of reacting carbon dioxide mixture // Chem. Phys. 2012. Vol. 398. P. 111–117. https://doi.org/10.1016/j.chemphys.2011.05.019

Kustova E.V., Nagnibeda E.A., Shevelev Yu.D., Syzranova N.G. Different models for CO2 flows in a shock layer // Shock Waves. 2011. Vol. 21, N3. P. 273–287. https://doi.org/10.1007/s00193-011-0324-0

Eremin A.V., Ziborov V.S., Shumova V.V. Kinetics of CO2 dissociation at multi-modal vibrational nonequilibrium // Chem. Phys. Reports. 1997. Vol. 16, N9. P. 1507–1520.

Armenise I., Kustova E.V. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide // J. Phys. Chem. 2018. Vol. 122. P. 5107–5120. https://doi.org/10.1021/acs.jpca.8b03266

Silva T., Grofulovic M., Klarenaar B.L.M., et al. Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy // Plasma Sources Sci. Technol. 2018. Vol. 27, N1. Art. no. 015019. https://doi.org/10.1088/1361-6595/aaa56a

Andrews G.R. Foundations of Multithreaded, Parallel, and Distributed Programming. Pearson, 1999.

Кустова Е.В., Нагнибеда Е.А., Пузырева Л.А. Описание неравновесной кинетики в многоатомных газах. Учебное пособие. СПб.: Изд-во С.-Петерб. ун-та, 2016.

Шварц Р.Н., Славский З.И., Герцфельд К.Ф. Расчет времени колебательной релаксации в газах // В кн.: Газодинамика и теплообмен при наличии химических реакций. М.: Наука, 1962. С. 399–420.

Bartolomei M., Pirani F., Laganà A., Lombardi A. A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes // Journ. Comp. Chemistry. 2012. Vol. 33. P. 1806–1819. https://doi.org/10.1002/jcc.23010

Billing C.D. Semiclassical calculation of energy transfer in polyatomic molecules. II. The effect of anharmonic coupling terms // Chem. Phys. 1980. Vol. 46. P. 123–131. https://doi.org/10.1016/0301-0104(80)85089-0

Clary D.C. Ab initio calculations of vibrational relaxation rate coefficients for the collisions of CO2 with helium and neon atoms // Chem. Phys. 1982. Vol. 65. P. 247–257. https://doi.org/10.1016/0301-0104(82)85073-8

Achasov O.V., Ragosin D.S. Rate Constants of V-V exchange for CO2-GDL: Preprint 16. Minsk, Bielarus: Institute of Heat and Mass Transfer, 1986.


References

Gordiets B., Osipov A., Shelepin L.А., Kinetic Processes in Gases and Molecular Lasers (Gordon and Breach Science Publishers, Amsterdam, 1988).

Park C., Howe J.T., Howe R. L., “Review of Chemical Kinetic Problems of Future NASA Missions, II: Mars Entries”, J. Thermophys. Heat Transfer 8(1), 9–23 (1994). https://doi.org/10.2514/3.496

Shevelev Yu.D., Syzranova N.G., Kustova E.V., Nagnibeda E.A., “Numerical simulation of hypersonic flows around space vehicles descending in the Martian atmosphere”, Mathematical Models and Computer Simulations 3(2), 205–224 (2011).

Kustova E.V., Nagnibeda E.A., Armenise I., “Vibrational-Chemical Kinetics in Mars Entry Problems”, The Open Plasma Physics Journal 7, N Suppl 1: M5, 76–87 (2014). https://doi.org/10.2174/1876534301407010076

Kustova E.V., Nagnibeda E.A., “State-to-State Theory of Vibrational Kinetics and Dissociation in Three-Atomic Gases”, Rarefied Gas Dynamics. AIP Conference Proceedings 585, 620–627 (eds. T. Bartel, M.Gallis, 2001). https://doi.org/10.1063/1.1407618

Armenise I., Kustova E.V., “State-to-State Models for CO2 Molecules: from the Theory to an Application to Hypersonic Boundary Layers”, Chem. Phys. 415, 269–281 (2013). https://doi.org/10.1016/j.chemphys.2013.01.034

Kustova E.V., Nagnibeda E.A., “Kinetic model for multi-temperature flows of reacting carbon dioxide mixture”, Chem. Phys. 398, 111–117 (2012). https://doi.org/10.1016/j.chemphys.2011.05.019

Kustova E.V., Nagnibeda E.A., Shevelev Yu.D., Syzranova N.G., “Different models for CO2 flows in a shock layer”, Shock Waves 21(3), 273–287 (2011). https://doi.org/10.1007/s00193-011-0324-0

Eremin A.V., Ziborov V. S., Shumova V.V., “Kinetics of CO2 dissociation at multi-modal vibrational nonequilibrium”, Chem. Phys. Reports 16(9), 1507–1520 (1997).

Armenise I., Kustova E.V., “Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide”, J. Phys. Chem. 122, 5107–5120 (2018). https://doi.org/10.1021/acs.jpca.8b03266

Silva T., Grofulovi M., Klarenaar B. L.M., et al., “Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy”, Plasma Sources Sci. Technol. 27(1), 015019 (2018). https://doi.org/10.1088/1361-6595/aaa56a

Andrews G.R., Foundations of Multithreaded, Parallel, and Distributed Programming (Pearson, 1999).

Kustova E.V., Nagnibeda E.A., Puzyreva L.A., Nonequilibrium Kinetics in Polyatomic Gases (St. Petersburg Univ. Press, St. Petersburg, 2016).

Shwartz R.N., Slavsky Z. I., Herzfeld K. F., Calculation of Vibrational Relaxation Times in Gases, in: Thermodynamic Properties of Individual Substances, 399–420 (Nauka Publ., Moscow, 1962). (In Russian)

Bartolomei M., Pirani F., Laganà A., Lombardi A., “A Full Dimensional Grid Empowered Simu-lation of the CO2 + CO2 Processes”, Journ. Comp. Chemistry 33, 1806–1819 (2012). https://doi.org/10.1002/jcc.23010

Billing C.D., “Semiclassical calculation of energy transfer in polyatomic molecules. II. The effect of anharmonic coupling terms”, Chem. Phys. 46, 123–131 (1980). https://doi.org/10.1016/0301-0104(80)85089-0

Clary D.C., “Ab initio calculations of vibrational relaxation rate coefficients for the collisions of CO2 with helium and neon atoms”, Chem. Phys. 65, 247–257 (1982). https://doi.org/10.1016/0301-0104(82)85073-8

Achasov O.V., Ragosin D. S., Rate Constants of V-V exchange for CO2-GDL: Preprint 16 (Institute of Heat and Mass Transfer, Minsk, Bielarus, 1986).

Published

2019-11-28

How to Cite

Gorikhovskii, V. I., & Nagnibeda, E. A. (2019). Energy exchange rate coefficients in modeling carbon dioxide kinetics: calculation optimization. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 6(4), 659–671. https://doi.org/10.21638/11701/spbu01.2019.411

Issue

Section

Mechanics

Most read articles by the same author(s)