On the average perimeter of the inscribed random polygon
DOI:
https://doi.org/10.21638/11701/spbu01.2020.108Abstract
Suppose we put on the unit circumference n independent uniformly distributed random points and build a convex random polygon with the vertices in these points. What are the average area and the average perimeter of this polygon? The average area was calculated by K. Brown some years ago. We calculatе the average perimeter and obtain quite similar formulae. In the same time we discuss the rate of convergence of this value to the limit. We evaluate also the average value of the sum of squares for the sides of the inscribed triangle.
Keywords:
random polygon, perimeter, convexity, uniform distribution
Downloads
References
Литература
Yaglom I. M., Boltyanskii V. G. Convex figures. Holt, Rinehart and Winston, 1961.
Lao W., Mayer M. U-max-statistics // Journ. Multiv. Anal. 2008. Vol. 99. P. 2039–2052.
Mayer M. Random Diameters and Other U-max-Statistics. Ph.D. Thesis, Bern University, 2008.
Koroleva E. V., Nikitin Ya. Yu. U-max-statistics and limit theorems for perimeters and areas of random polygons // Journ. Multiv. Anal. 2014. Vol. 127, N 5. P. 98–111.
Brown K. Expected Area of Random Polygon In a Circle. Available at: https://www.mathpages.com/home/kmath516/kmath516.htm (accessed: September 19, 2019).
Gradshteyn I. S., Ryzhik I. M. Table of integrals, series and products. Academic Press: 1980.
Прасолов В. В. Задачи по планиметрии. М.: МЦНМО, 2001.
Алексеев В. М., Галеев Э. М., Тихомиров В. М. Сборник задач по оптимизации. Теория. Примеры. Задачи. M.: Наука, 1984.
Ioffe A., Tikhomirov V. Extremal Problems. Amsterdam: North Holland, 1979
References
Yaglom I. M., Boltyanskii V. G., Convex figures (Holt, Rinehart and Winston, 1961).
Lao W., Mayer M., “U-max-statistics”, Journ. Multiv. Anal. 99, 2039–2052 (2008).
Mayer M., Random Diameters and Other U-max-Statistics (Ph.D. Thesis, Bern University, 2008).
Koroleva E. V., Nikitin Ya. Yu., “U-max-statistics and limit theorems for perimeters and areas of random polygons”, Journ. Multiv. Anal. 127(5), 98–111 (2014).
Brown K., Expected Area of Random Polygon In a Circle. Available at: https://www.mathpages.com/home/kmath516/kmath516.htm (accessed: September 19, 2019).
Gradshteyn I. S., Ryzhik I. M., Table of integrals, series and products (Academic Press, 1980).
Prasolov V., Problems in planimetry (MTsNMO Publ., Мoscow, 2001). (In Russian)
Alekseev V. M., Galeev E. M., Tikhomirov V. M., Collection of problems on optimization. Theory. Examples. Problems (Nauka Publ., Moscow, 1984). (In Russian)
Ioffe A., Tikhomirov V., Extremal Problems (North Holland Publ., Amsterdam, 1979).
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.