Sharp estimates for mean square approximations of classes of differentiable periodic functions by shift spaces
Abstract
Пусть L2 - пространство 2π-периодических функций, суммируемых с квадратом, E(f, X)2 - наилучшее приближение функции f пространством X в L2. При n ∈ N, B ∈ L2 обозначим через SB,n пространство функций s вида2n-1jns(x) = β B (x - jπ.j=0j=0В работе дается описание всех пространств SB,n, для которых справедливо точное неравенство E(f, SB,n)2 1 1f (r) 12.nrПри этом указываются подпространства размерности 2n - 1, реализующие ту же оценку. В качестве частных случаев получаются известные неравенства для приближения тригонометрическими многочленами и сплайнами.
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.