Geodetic (relativistic) rotation of the solar system bodies

Authors

  • Vladimir V. Pashkevich

Abstract

This investigation is continuation of our studies of the geodetic (relativistic) rotation of the Solar system bodies. For each body (the Moon, the Sun, the major planets and Pluto) the files of the values of the components of the angular velocity of the geodetic rotation are constructed over the time span from AD1000 to AD3000 with one day spacing, by using JPL DE422/LE422 ephemeris, with respect to the proper coordinate systems of the bodies. New method for calculation the values of the geodetic rotation any bodies of the Solar system was received. This method has a good confirmation of the results for the Earth case. In the first time in the perturbing terms of the physical librations for the Moon and in Euler angles for other bodies of the Solar system the most essential terms of the geodetic rotation are found by means of the least squares method and spectral analysis methods. For the Sun, giant planets and Pluto the geodetic rotation is insignificant. For the terrestrial planets and the Moon the geodetic rotation is significant and has to be taken into account for the construction of the high-precision theories of the rotational motion of these bodies. Refs 14. Figs 1. Tables 2.

Downloads

Download data is not yet available.

References

1. Eroshkin G.I., Pashkevich V.V. Geodetic rotation of the Solar system bodies // Artificial Satellites. 2007. Vol. 42, N 1. P. 59-70.

2. Eroshkin G.I., Pashkevich V.V. On the geodetic rotation of the major planets, the Moon and the Sun // Artificial Satellites. 2009. Vol. 44, N 2. P. 43-52.

3. Standish E.M., Newhall X.X., Williams J.G., Folkner W.M. JPL Planetary and Lunar Ephemerides, DE403/LE403 // JPL IOM. 1995. 314.10-127.

4. Kopeikin S., Efroimsky M., Kaplan G. Relativistic Celestial Mechanics in the Solar System. Berlin. Wiley-VCH. 2011.

5. Seidelmann P.K., Archinal B.A., A'Hearn M.F., Cruikshank D.P., Hilton J.L., Keller H.U., Oberst J., Simon J.L., Stooke P., Tholen D.J., Thomas P.C. Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003 // Celestial Mechanics and Dynamical Astronomy. 2005. Vol. 91. P. 203-215.

6. Folkner W.F. JPL Planetary and Lunar Ephemerides: Export Information. 2011.

7. Brumberg V.A., Bretagnon P. Kinematical Relativistic Corrections for Earth's Rotation Parameters // Proc. of IAU Colloquium 180 / eds K. Johnston, D. McCarthy, B. Luzum, G. Kaplan. U. S. Naval Observatory, 2000. P. 293-302.

8. Абалакин В.К. Основы эфемеридной астрономии. М.: Наука, 1979. 448 с.

9. Bretagnon P., Francou G., Rocher P., Simon J.L. SMART97: A new solution for the rotation of the rigid Earth // Astron. Astrophys. 1998. Vol. 329, N 1. P. 329-338.

10. Жаров В.Е. Сферическая астрономия. Фрязино, 2006. 480 с.

11. Вулард Э. Теория вращения Земли вокруг центра масс. М.: Физматгиз, 1963. 142 с.

12. Пашкевич В.В., Ерошкин Г.И. Построение полуаналитического и численного решений задачи о вращательном движении Луны // Астрономический вестник. 2013. Т. 47, №1. С. 70-73.

13. Pashkevich V.V. Construction of the non-rigid Earth rotation series // Artificial Satellites. 2007. Vol. 42, N 4. P. 215-227.

14. Bretagnon P., Francou G. Planetary theories in rectangular and spherical variables // Astronomy and Astrophysics. 1988. Vol. 202. P. 309-315.

Published

2020-08-20

How to Cite

Pashkevich, V. V. . (2020). Geodetic (relativistic) rotation of the solar system bodies. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 3(3), 506–516. Retrieved from https://math-mech-astr-journal.spbu.ru/article/view/8697

Issue

Section

Astronomy