Two-dimensional homogeneous cubic systems: Classification and normal forms - VI

Authors

  • Vladimir V. Basov
  • Aleksandr S. Chermnykh

DOI:

https://doi.org/10.21638/spbu01.2020.302

Abstract

The present article is the sixth in a series of papers dedicated to two-dimensional cubic homogeneous systems. It considers a case when a homogeneous polynomial vector in the right-hand part of the system does not have a common factor. A set of such systems is divided into classes of linear equivalence, wherein the simplest system being a third-order normal form is distinguished on the basis of properly introduced principles. Such a form is defined by the matrix of its right-hand part coefficients, which is called the canonical form (CF). Each CF has its own arrangement of non-zero elements, their specific normalization and canonical set of permissible values for the unnormalized elements, which relates the CF to the selected class of equivalence. In addition to classification, each CF is provided with: a) conditions on the coefficients of the initial system, b) non-singular linear substitutions that reduce the right-hand part of the system under these conditions to the selected CF, c) obtained values of CF’s unnormalized elements. The proposed classification was primarily created to obtain all possible structures of generalized normal forms for systems with CF in the unperturbed part. The article presents another application of the resulting classification related to finding phase portraits in the Poincare circle for CF.

Downloads

Download data is not yet available.
 

References

Литература

1. Басов В.В. Двумерные однородные кубические системы: классификация и нормальные формы - I // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2016. Т. 3 (61). Вып. 2. С. 181–195. https://doi.org/10.21638/11701/spbu01.2016.201

2. Басов В.В. Двумерные однородные кубические системы: классификация и нормальные формы - II // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2016. Т. 3 (61). Вып. 3. С. 355–371. https://doi.org/10.21638/11701/spbu01.2016.302

3. Басов В.В., Чермных А. С. Двумерные однородные кубические системы: классификация и нормальные формы - III // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2017. Т. 4 (62). Вып. 2. С. 179–192. https://doi.org/10.21638/11701/spbu01.2017.201

4. Басов В.В., Чермных А. С. Двумерные однородные кубические системы: классификация и нормальные формы - IV // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2017. Т. 4 (62). Вып. 3. С. 370–386. https://doi.org/10.21638/11701/spbu01.2017.302

5. Басов В.В., Чермных А. С. Двумерные однородные кубические системы: классификация и нормальные формы - V // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 4. С. 556–571. https://doi.org/10.21638/11701/spbu01.2018.403

6. Cima A., Llibre J. Algebraic and topological classification of the homogeneous cubic vector fields in the plane // J. Math. Anal. Appl. 1990. Vol. 147, no. 2. P. 420–448.

7. Окунев Л.Я. Высшая алгебра. М.; Л.: Гос. изд-во техн.-теор. лит-ры, 1949.

8. Gurevich G. Foundations of the Theory of Algebraic Invariants. Groningen: Noordhoff, 1964.

9. Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А. Г. Качественная теория динамических систем второго порядка. М.: Наука, 1966.

10. Sotomayor J. Curvas definidas por equa¸c˜oes diferenciais no plano. Rio de Janeiro: Instituto de Matematica Pura e Aplicada, 1981.

11. Басов В. В., Федорова Е.В. Двумерные вещественные системы ОДУ с квадратичной невозмущенной частью: классификация и вырожденные обобщенные нормальные формы // Дифференц. уравнения и процессы управления. 2010. №4. С. 49–85. URL: https://diffjournal.spbu.ru/pdf/basovfr.pdf (дата обращения: 04.05.2020).

12. Date T. Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems // J. Differential Equations. 1979. Vol. 32, no. 3. P. 311–334.

13. Вулпе Н.И., Сибирский К.С. Геометрическая классификация квадратичной дифференциальной системы // Дифференц. уравнения. 1977. T. 13, №5. C. 803–814.

14. Андреева И.А., Андреев А.Ф. Фазовые портреты одного семейства кубических систем в круге Пуанкаре. Lambert Academic Publishing, 2017.

References

1. Basov V.V., “Two-dimensional homogeneous cubic systems: Classification and normal forms: I”, Vestnik St. Petersb. Univ. Math. 49, iss. 2, 99–110 (2016). https://doi.org/10.3103/S1063454116020023

2. Basov V.V., “Two-dimensional homogeneous cubic systems: Classification and normal forms: II”, Vestnik St. Petersb. Univ. Math. 49, iss. 3, 204–218 (2016). https://doi.org/10.3103/S1063454116030031

3. Basov V.V., Chermnykh A. S., “Two-dimensional homogeneous cubic systems: classification and normal forms: III”, Vestnik St. Petersb. Univ. Math. 50, iss. 2, 97–110 (2017). https://doi.org/10.3103/S1063454117020029

4. Basov V.V., Chermnykh A. S., “Two-dimensional homogeneous cubic systems: classification and normal forms: IV”, Vestnik St. Petersb. Univ. Math. 50, iss. 3, 217–234 (2017). https://doi.org/10.3103/S1063454117030049

5. Basov V.V., Chermnykh A. S., “Two-dimensional homogeneous cubic systems: classification and normal forms: V”, Vestnik St. Petersb. Univ. Math. 51, iss. 4, 327–342 (2018). https://doi.org/10.3103/S1063454118040040

6. Cima A., Llibre J., “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl. 147 (2), 420–448 (1990).

7. Okunev L.Ya., Higher algebra (Gosudarstvennoe izdatel’stvo tehniko-teoreticheskoj literatury, Moscow, 1949). (In Russian)

8. Gurevich G., Foundations of the Theory of Algebraic Invariants (Noordhoff, Groningen, 1964).

9. Andronov A.A., Leontovich E.A., Gordon I. I., Maier A.G., Qualitative theory of second order dynamical systems (Halsted Press, New York, Toronto, 1973).

10. Sotomayor J., Curvas definidas por equa¸c˜oes diferenciais no plano (Instituto de Matematica Pura e Aplicada, Rio de Janeiro, 1981). (In Portuguese)

11. Basov V.V., Fedorova E.V., “Two-dimensional real systems of ODE with quadratic unperturbed parts: classification and degenerate generalized normal forms”, Differential equations and control processes (4), 49–85 (2010). Available at: https://diffjournal.spbu.ru/pdf/basovfe.pdf (accessed: May 4, 2020).

12. Date T., “Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems”, J. Differential Equations 32 (3), 311–334 (1979).

13. Vulpe N. I., Sibirskii K. S., “Geometric classification of a quadratic differential system”, Differencial’nye Uravnenija 13 (5), 803–814 (1977). (In Russian)

14. Andreeva I.A., Andreev A.F., Phase portraits of one family of cubic systems in a Poincare circle (Lambert Academic Publishing, 2017). (In Russian)

Published

2020-09-04

How to Cite

Basov, V. V., & Chermnykh, A. S. (2020). Two-dimensional homogeneous cubic systems: Classification and normal forms - VI. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(3), 377–391. https://doi.org/10.21638/spbu01.2020.302

Issue

Section

Mathematics

Most read articles by the same author(s)

1 2 > >>