О существовании решения граничной задачи Коши
DOI:
https://doi.org/10.21638/11701/spbu01.2020.210Аннотация
Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной. Предполагается, что его правая часть определена и непрерывна на множестве, состоящем из области двумерного евклидова пространства и некоторой части ее границы. Известно, что теорема Пеано для любой точки области гарантирует существование решения задачи Коши на отрезке Пеано. В статье методом ломаных Эйлера на некотором аналоге отрезка Пеано доказано существование решения задачи Коши, поставленной в граничной точке области во всех случаях, позволяющих применить указанный метод. Также приведены условия, гарантирующие отсутствие решения граничной задачи Коши.
Ключевые слова:
граничная задача Коши, существование решения, отрезок Пеано
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.