Двумерные однородные кубические системы: классификация и нормальные формы—I
DOI:
https://doi.org/10.21638/11701/spbu01.2016.201Аннотация
Настоящая работа является первой в цикле работ, посвященном классификации двумерных однородных кубических систем, основанной на разбиении систем на классы линейной эквивалентности. Разрабатываются принципы, позволяющие конструктивно выделять в каждом классе структуру самой простой системы и каноническое множество, определяющее допустимые значения, которые могут принимать ее коэффициенты. Векторный многочлен в правой части такой системы, отождествляемый с (2×4)-матрицей, будем называть канонической формой (КФ), а саму систему — кубической нормальной формой. Одна из основных задач цикла заключается в том, чтобы максимально облегчить сведение системы с однородным кубическим многочленом в невозмущенной части к различным структурам обобщенной нормальной формы (ОНФ). Под ОНФ подразумевается система, возмущенная часть которой имеет в том или ином смысле самый простой вид. Конструктивная реализация процесса нормализации зависит от возможности в явном виде указать условия совместности и всевозможные решения так называемой связующей системы, под которой понимается счетное множество линейных алгебраических систем уравнений, определяющих нормализующие преобразования возмущенной системы. Упомянутые принципы основываются на идее максимально возможного упрощения связующей системы. Это позволяет сначала линейной обратимой заменой переменных сводить исходную систему к системе с какой-либо КФ в невозмущенной части, а затем полученную систему, оптимальную для нормализации, почти тождественными заменами сводить к различным структурам ОНФ. В данной работе: 1) ставится общая задача, а также формулируются близкие по постановке задачи с описанием имеющихся результатов; 2) выводится связующая система, позволяющая установить эквивалентность двух любых возмущенных систем с одинаковой однородной кубической частью, и обсуждаются возможности ее упрощения, а также определяется ОНФ и приводится метод резонансных уравнений, позволяющий конструктивно получать все ее структуры; 3) вводятся специальные формы записи однородных кубических систем при наличии в их правых частях однородного общего множителя, имеющего степень от единицы до трех; исследуется линейная эквивалентность таких систем, а также систем, не имеющих общего множителя; выделяются основные линейные инварианты. Библиогр. 20 назв.Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.