Stable and completely unstable periodic points of diffeomorphism of a plane with a heteroclinic contour

Authors

  • Ekaterina V. Vasil’eva

DOI:

https://doi.org/10.21638/spbu01.2020.303

Abstract

We study the diffeomorphism of a plane into itself with three fixed hyperbolic points. It is assumed that at the intersections of the unstable manifold of the first point and the stable manifold of the second point, the unstable manifold of the second point and the stable manifold of the third point, the unstable manifold of the third first point and the stable manifold of the first point are heteroclinic points. The orbits of fixed and heteroclinic points form a heteroclinic contour. The case is studied when stable and unstable manifolds intersect non-transversally at heteroclinic points. Among the points of non-transversal intersection of a stable manifold with an unstable manifold, first of all, points of tangency of finite order are distinguished; in this paper, such points are not considered. In the works of L. P. Shilnikov, S. V.Gonchenko and other authors studied diffeomorphism with heteroclinic contour, it was assumed that the points of non-transversal intersection of a stable and unstable manifolds are points of tangency of finite order. It follows from the works of these authors that there exist diffeomorphisms for which there are stable and completely unstable periodic points in the neighborhood of the heteroclinic contour. In this paper, it is assumed that the points of a non-transversal intersection of a stable and unstable manifolds are not points of tangency of finite order. It is shown that in the neighborhood of such a heteroclinic contour two countable sets of periodic points can lie. One of these sets consists of stable periodic points, whose characteristic exponents are separated from zero, the second - from completely unstable periodic points, whose characteristic exponents are also separated from zero.

Downloads

Download data is not yet available.
 

References

Литература

1. Плисс В.А. Интегральные множества периодических систем дифференциальных уравнений. М.: Наука, 1977.

2. Чернышев В.Е. Структура окрестности гомоклинического контура с седловой точкой покоя // Дифференц. уравнения. 1985. Т. 21, №9. С. 1531–1536.

3. Гаврилов Н.К. О трехмерных динамических системах, имеющих негрубый гомоклинический контур // Матем. заметки. 1973. Т. 14. Вып. 5. С. 687–696.

4. Гонченко С.В., Тураев Д.В., Шильников Л.П. Об областях Ньюхауса двумерных диффеоморфизмов, близких к диффеоморфизму с негрубым гетероклиническим контуром // Труды Математического института им. В. А. Стеклова. 1997. Т. 216, №5. С. 76–125.

5. Гонченко С.В., Стенькин О.В., Шильников Л.П. О существовании счетного множества устойчивых и неустойчивых инвариантных торов у систем из областей Ньюхауса с гетероклиническим контуром // Нелинейная динамика. 2006. Т. 2, №1. С. 3–25.

6. Иванов Б.Ф. Устойчивость траекторий, не покидающих окрестность гомоклинической кривой // Дифференц. уравнения. 1979. Т. 15, №8. С. 1411–1419.

7. Васильева Е.В. Устойчивые периодические точки двумерных диффеоморфизмов класса C1 // Вестник С.-Петерб. ун-та. Сер. 1. Математика. Механика. Астрономия. 2007. Вып. 2. С. 20–26.

References

1. Pliss V.A., Integral sets of periodic systems of differential equations (Nauka Publ., Moscow, 1977). (In Russian)

2. Chernyshev V.E., “Structure of the neighborhood of a homoclinic contour with a saddle point of rest”, Differ. Uravn. 21 (9), 1531–1536 (1985). (In Russian)

3. Gavrilov N.K., “Three-dimensional dynamic systems with noncoarse homoclinical contours”, Mathematical Notes of the Academy of Sciences of the USSR 14, 953–957 (1973). https://doi.org/10.1007/BF01462256

4. Gonchenko S.V., Turaev D.V., Shilnikov L.P., “On Newhouse domains of two-dimensional diffeomorphisms that are close to a diffeomorphism with a structurally unstable heteroclinic contour”, Proceedings of the Steklov Institute of Mathematics 216, 70–118 (1997).

5. Gonchenko S.V., Sten’kin O.V., Shilnikov L. P., “On the existence of infinitely many stable and unstable invariant tori for systems from Newhouse regions with heteroclinic tangencies”, Russian Journal of Nonlinear Dynamics 2 (1), 3–25 (2006). https://doi.org/10.20537/nd0601001 (In Russian)

6. Ivanov B. F., “Stability of trajectories that do not leave the neighborhood of a homoclinic curve”, Differ. Uravn. 15 (8), 1411–1419 (1979). (In Russian)

7. Vasil’eva E.V., “Stable nonperiodic points of two-dimensional C1-diffeomorphisms”, Vestnik St. Petersb. Univ. Math. 40, iss. 2, 107–113 (2007). https://doi.org/10.3103/S1063454107020045

Published

2020-09-04

How to Cite

Vasil’eva, E. V. (2020). Stable and completely unstable periodic points of diffeomorphism of a plane with a heteroclinic contour. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(3), 392–403. https://doi.org/10.21638/spbu01.2020.303

Issue

Section

Mathematics

Most read articles by the same author(s)