Coupled vibrations of viscoelastic three-layer composite plates. 1. Formulation of problem

Authors

  • Victor M. Ryabov
  • Boris A. Yartsev
  • Ludmila V. Parshina

DOI:

https://doi.org/10.21638/spbu01.2020.309

Abstract

A mathematical model of damped oscillations of three-layer plates formed by two rigid anisotropic layers and a soft middle isotropic layer of a viscoelastic polymer is proposed. Each hard layer is an anisotropic structure formed by a finite number of randomly oriented orthotropic viscoelastic composites layers. The model is based on the use of the Hamiltonian variational principle, the refined theory of first-order plates (Reissner-Mindlin theory), the model of complex modules and the principle of elastic-viscoelastic correspondence in the linear theory of viscoelasticity. When describing the physical relationships of hard layer materials, the influence of the vibration frequency and the ambient temperature is considered negligible, while for the soft layer of a viscoelastic polymer, the temperaturefrequency dependence of the elastic-dissipative characteristics is taken into account based on experimentally determined generalized curves. As a special case of the general problem, by neglecting the deformation of the middle surfaces of the rigid layers in one of the directions of the axes of the rigid layers of a three-layer plate, the equations of longitudinal and transverse damped oscillations of a globally orthotropic three-layer beam are obtained. Minimization of the Hamilton functional allows us to reduce the problem of damped vibrations of anisotropic structures to the algebraic problem of complex eigenvalues.

Downloads

Download data is not yet available.
 

References

Литература

1. Bert C.W. Composite Materials: a Survey of Damping Capacity of Fiber Reinforced Composites // Damping Applications for Vibration Control. ASME AMD-38. 1980. P. 53–63.

2. Gibson R. F. Dynamic Mechanical Properties of Advanced Composite Materials and Structures: A Review // Shock & Vibration Digest. 1987. Vol. 19, no. 7. P. 13–22.

3. Зиновьев П. А., Ермаков Ю.Н. Характеристики рассеяния энергии при колебаниях в элементах конструкций из волокнистых композитов (обзор). М.: ЦНИИ научно-техн. информации. 1989.

4. Benchekchou B., Coni M., Howarth H., White R. Some aspects of vibration damping improvement in composite materials // Composites. Part B: Engineering. 1998. Vol. 29B. P. 809–817.

5. Chandra R., Singh S. P., Gupta K. Damping studies in fiber-reinforced composites - a review // Composite Structures. 1999. Vol. 46. P. 41–51. https://doi.org/10.1016/S0263-8223(99)00041-0

6. Finegan I. C., Gibson R. F. Recent research on enhancement of damping in polymer composites //Composite Structures. 1999. Vol. 44, no. 2–3. P. 89–98. https://doi.org/10.1016/S0263-8223(98)00073-7

7. Treviso A., Van Genechten B., Mundo D., Tournour M. Damping in composite materials: Properties and models // Composites: Part B. 2015. Vol. 78. P. 144–152. https://doi.org/10.1016/j.compositesb.2015.03.081

8. Zhou X. Q., Yu D. Y., Shao X. Y., Zhang S. Q., Wang S. Research and applications of viscoelastic vibration damping materials: A review // Composite Structures. 2016. Vol. 136. P. 460–480. https://doi.org/10.1016/j.compstruct.2015.10.014

9. Паршина Л. В., Рябов В. М., Ярцев Б. А. Рассеяние энергии при колебаниях неоднородных композитных структур. 1. Постановка задачи // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 2. С. 300–309. https://doi.org/10.21638/11701/spbu01.2018.210

10. Паршина Л. В., Рябов В. М., Ярцев Б. А. Рассеяние энергии при колебаниях неоднородных композитных структур. 2. Метод решения // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2018. Т. 5 (63). Вып. 4. С. 678–688. https://doi.org/10.21638/11701/spbu01.2018.414

11. Паршина Л. В., Рябов В. М., Ярцев Б. А. Рассеяние энергии при колебаниях неоднородных композитных структур. 3. Численный эксперимент // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 1. С. 144–156. https://doi.org/10.21638/11701/spbu01.2019.111

12. Berthelot J.-M. Damping analysis of orthotropic composites with interleaved viscoelastic layers: modeling // Journal of Composite Materials. 2006. Vol. 40. Iss. 21. P. 1889–1909. https://doi.org/10.1177/0021998306061302

13. Berthelot J.-M., Sefrani Y. Damping analysis of unidirectional glass fiber composites with interleaved viscoelastic layers: experimental investigation and discussion // Journal of Composite Materials. 2006. Vol. 40. Iss. 21. P. 1911–1932. https://doi.org/10.1177/0021998306061303

14. Hao M., Rao M.D. Vibration and Damping Analysis of a sandwich beam containing a viscoelastic constraining layer // Journal of Composite Materials. 2005. Vol. 39. Iss. 18. P. 1621–1643. https://doi.org/10.1177/0021998305051124

15. Rao M., Echempati R., Nadella S. Dynamic analysis and damping of composite structures embedded with viscoelastic layers // Composites. Part B: Engineering. 1997. Vol 28. Iss. 5–6. P. 547–554.

16. Fotsing E., Sola M., Ross A., Ruiz E. Lightweight damping of composite sandwich beams: experimental analysis // Journal of Composite Materials. 2012. Vol. 47. Iss. 12. P. 1501–1511. https://doi.org/10.1177/0021998312449027

17. Li J., Narita Y. Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions // Composites. Part B: Engineering. 2013. Vol. 45. Iss. 1. P. 972–980. https://doi.org/10.1016/j.compositesb.2012.09.014

18. Youzera H., Meftah S., Challamel N., Tounsi A. Nonlinear damping and forced vibration analysis of laminated composite beams // Composites. Part B: Engineering. 2012. Vol. 43. Iss. 3. P. 1147–1154. https:/doi.org/10.1016/j.compositesb.2012.01.008

19. Болотин В.В., Новичков Ю.Н. Механика многослойных конструкций. М.: Машиностроение, 1980.

20. Gibson R. F. Principles of Composite Material Mechanics. 3rd ed. Taylor & Francis Group, LLC, 2012.

21. Reddy J.N. Mechanics of laminated composite plates and shells. Theory and analysis. 2nd ed. CRC Press LLC, 2004.

22. Berthelot J.-M. Dynamics of composite materials and structures. Vallouise, France: Les Clousures. At the Bottom of Ecrins 4102 m, 2015.

References

1. Bert C. W., “Composite Materials: a Survey of Damping Capacity of Fiber Reinforced Composites”, Damping Applications for Vibration Control. ASME AMD-38, 53–63 (1980).

2. Gibson R. F., “Dynamic Mechanical Properties of Advanced Composite Materials and Structures: A Review”, Shock & Vibration Digest 19(7), 13–22 (1987).

3. Zinoviev P. A., Ermakov Yu. N., Vibrational energy dissipation characteristics in fiber composites structural elements (review) (Central Research Institute scientific and technical Information, Moscow, 1989). (In Russian)

4. Benchekchou B., Coni M., Howarth H., White R., “Some aspects of vibration damping improvement in composite materials”, Composites. Part B: Engineering 29B, 809–817 (1998).

5. Chandra R., Singh S. P., Gupta K., “Damping studies in fiber-reinforced composites - a review”, Composite Structures 46, 41–51 (1999). https://doi.org/10.1016/S0263-8223(99)00041-0

6. Finegan I. C., Gibson R. F., “Recent research on enhancement of damping in polymer composites”, Composite Structures 44 (2–3), 89–98 (1999). https://doi.org/10.1016/S0263-8223(98)00073-7

7. Treviso A., Van Genechten B., Mundo D., Tournour M., “Damping in composite materials: Properties and models”, Composites: Part B 78, 144–152 (2015). https://doi.org/10.1016/j.compositesb.2015.03.081

8. Zhou X. Q., Yu D. Y., Shao X. Y., Zhang S. Q., Wang S., “Research and applications of viscoelastic vibration damping materials: A review”, Composite Structures 136, 460–480 (2016). https://doi.org/10.1016/j.compstruct.2015.10.014

9. Parshina L. V., Ryabov V. M., Yartsev B. A., “Energy dissipation during vibrations of nonuniform composite structures: 1. Formulation of the problem”, Vestnik St. Petersburg University. Mathematics 51(2), 175–181 (2018). https://doi.org/10.3103/S1063454118020073

10. Parshina L. V., Ryabov V. M., Yartsev B. A., “Energy Dissipation during Vibrations of Heterogeneous Composite Structures: 2. Method of Solution”, Vestnik St. Petersburg University. Mathematics 51(4), 413–420 (2018). https://doi.org/10.3103/S106345411804012X

11. Parshina L. V., Ryabov V.M., Yartsev B. A., “Energy Dissipation during Vibrations of Heterogeneous Composite Structures: 3. Numerical Experiments”, Vestnik St. Petersburg University. Mathematics 52(1), 102–111 (2019). https://doi.org/10.3103/S1063454119010114

12. Berthelot J.-M., “Damping analysis of orthotropic composites with interleaved viscoelastic layers: modeling”, Journal of Composite Materials 40(21), 1889–1909 (2006). https://doi.org/10.1177/0021998306061302

13. Berthelot J.-M., Sefrani Y., “Damping analysis of unidirectional glass fiber composites with interleaved viscoelastic layers: experimental investigation and discussion”, Journal of Composite Materials 40(21), 1911–1932 (2006). https://doi.org/10.1177/0021998306061303

14. Hao M., Rao M.D., “Vibration and Damping Analysis of a sandwich beam containing a viscoelastic constraining layer”, Journal of Composite Materials 39(18), 1621–1643 (2005). https://doi.org/10.1177/0021998305051124

15. Rao M., Echempati R., Nadella S., “Dynamic analysis and damping of composite structures embedded with viscoelastic layers”, Composites. Part B: Engineering 28(5–6), 547–554 (1997).

16. Fotsing E., Sola M., Ross A., Ruiz E., “Lightweight damping of composite sandwich beams: experimental analysis”, Journal of Composite Materials 47(12), 1501–1511 (2012). https://doi.org/10.1177/0021998312449027

17. Li J., Narita Y., “Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions”, Composites. Part B: Engineering 45(1), 972–980 (2013). https://doi.org/10.1016/j.compositesb.2012.09.014

18. Youzera H., Meftah S., Challamel N., Tounsi A., “Nonlinear damping and forced vibration analysis of laminated composite beams”, Composites. Part B: Engineering 43(3), 1147–1154 (2012). https:/doi.org/10.1016/j.compositesb.2012.01.008

19. Bolotin V.V., Novichkov Yu.N., Mechanics of multilayer structures (Mashinostroenie Publ., Moscow, 1980). (In Russian)

20. Gibson R. F., Principles of Composite Material Mechanics (3rd ed., Taylor & Francis Group, LLC, 2012).

21. Reddy J. N., Mechanics of laminated composite plates and shells. Theory and analysis (2nd ed., CRC Press LLC, 2004).

22. Berthelot J.-M., Dynamics of composite materials and structures (Les Clousures, At the Bottom of Ecrins 4102 m, Vallouise, France, 2015).

Published

2020-09-04

How to Cite

Ryabov, V. M., Yartsev, B. A., & Parshina, L. V. (2020). Coupled vibrations of viscoelastic three-layer composite plates. 1. Formulation of problem. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(3), 469–480. https://doi.org/10.21638/spbu01.2020.309

Issue

Section

Mathematics

Most read articles by the same author(s)

1 2 > >>