Optimization of CO2 vibrational kinetics modeling in the full state-to-state approach

Authors

  • Viacheslav I. Gorikhovskii
  • Ekaterina A. Nagnibeda

DOI:

https://doi.org/10.21638/spbu01.2020.315

Abstract

Numerical modeling of nonequilibrium state-to-state carbon dioxide kinetics is a challenging time-consuming computational task that involves solving a huge system of stiff differential equations and requires optimized methods to solve it. In the present study, we propose and investigate optimizations for the extended backward differential formula (EBDF) scheme. Using adaptive timesteps instead of fixed ones reduces the number of steps in the algorithm many thousands of times, although with an increase in step complexity. The use of parallel computations to calculate relaxation terms allows one to further reduce the computation time. Numerical experiments on the modeling of spatially homogeneous carbon dioxide vibrational relaxation were performed for optimized computational schemes of different orders. Based on them, the most optimal algorithm of calculations was recommended: a parallel EBDF-scheme of fourth-order with an adaptive timestep. This method takes less computational time and memory costs and has the high stability.

Downloads

 

References

Литература

1. Park C., Howe J. T., Howe R. L. Review of Chemical Kinetic Problems of Future NASA Missions, II: Mars Entries // J. Thermophys. Heat Transfer. 1994. Vol. 8, no. 1. P. 9–23. https://doi.org/10.2514/3.496

2. Kustova E.V., Nagnibeda E.A., Armenise I. Vibrational-Chemical Kinetics in Mars Entry Problems // The Open Plasma Physics Journal. 2014. Vol. 7, N Suppl 1: M5. P. 76–87. https://doi.org/10.2174/1876534301407010076

3. Silva T., Grofulovic M., Klarenaar B. L.M., Morillo-Candas A. S., Guaitella O., Engeln R., Pintassilgo C.D., Guerra V. Kinetic study of low-temperature CO2 plasmas under non-equilibrium conditions. I. Relaxation of vibrational energy // Plasma Sources Sci. Technol. 2018. Vol. 27, N1. https://doi.org/10.1088/1361-6595/aadb60

4. Невдах В. В., Ганджали М. Колебательная кинетика активных сред непрерывных CO2- лазеров // Журнал прикладной спектроскопии. 2005. Т. 72, №1. С. 72–79.

5. Kustova E.V., Nagnibeda E.A. State-to-State Theory of Vibrational Kinetics and Dissociation in Three-Atomic Gases // Rarefied Gas Dynamics. 2001. Vol. 585. P. 620–627. (AIP Conference Proceedings.) https://doi.org/10.1063/1.1407618

6. Sahai A., Lopez B. E., Johnston C.O., Panesi M. Novel approach for CO2 state-to-state modeling and application to multi-dimensional entry flows // AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting. 2017. Vol.AIAA 2017-0213. P. 20. https://doi.org/10.2514/6.2017-0213

7. Kustova E.V., Nagnibeda E.A. On a correct description of a multi-temperature dissociating CO2 flow // Chem. Phys. 2006. Vol. 321. P. 293–310.

8. Kustova E.V., Nagnibeda E.A. Kinetic model for multi-temperature flows of reacting carbon dioxide mixture // Chem. Phys. 2012. Vol. 398. P. 111–117. https://doi.org/10.1016 /j.chemphys.2005.08.026

9. Gear C.W. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall PTR, 1971.

10. Cash J.R. On the Integration of Stiff Systems of O.D.E.S Using Extended Backward Differentiation Formulae // Numer. Math. 1980. Vol. 34. P. 235–246.

11. Alberdi E., Anza J. J. A Predictor Modification to the EBDF Method for Stiff Systems // Journal of Computational Mathematics. 2011. Vol. 29. P. 199–214.

12. Shampine L.F. Error Estimation and Control for ODEs // J. Sci. Comput. 2016. Vol. 25. P. 3–16. https://doi.org/10.1007/s10915-004-4629-3

13. Гориховский В.И., Нагнибеда Е.А. Коэффициенты скорости переходов колебательной энергии при столкновениях молекул углекислого газа: оптимизация вычислений // Вестник С.-Петерб. ун-та. Математика. Механика. Астрономия. 2019. Т. 6 (64). Вып. 4. С. 659–670. https://doi.org/10.21638/11701/spbu01.2019.411

14. Lass M., Mohr S., Wiebeler H., K¨uhne T.D., Plessl C. A Massively Parallel Algorithm for the Approximate Calculation of Inverse P-th Roots of Large Sparse Matrices // PASC’18: Proceedings of the Platform for Advanced Scientific Computing Conference. 2018. No. 7. P. 1–11. https://doi.org/10.1145/3218176.3218231

15. Herzberg G. Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Company, Inc., 1951.

16. Armenise I., Kustova E.V. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide // J. Phys. Chem. 2018. Vol. 122. P. 5107–5120. https://doi.org/10.1021/acs.jpca.8b03266

17. Шварц Р.Н., Славский З.И., Герцфельд К.Ф. Расчет времени колебательной релаксации в газах. В кн.: Газодинамика и теплообмен при наличии химических реакций. М.: Наука, 1962. С. 399–420.

References

1. Park C., Howe J.T., Howe R. L., “Review of Chemical Kinetic Problems of Future NASA Missions, II: Mars Entries”, J. Thermophys. Heat Transfer 8(1), 9–23 (1994). https://doi.org/10.2514/3.496

2. Kustova E.V., Nagnibeda E.A., Armenise I., “Vibrational-Chemical Kinetics in Mars Entry Problems”, The Open Plasma Physics Journal 7, N Suppl 1: M5, 76–87 (2014). https://doi.org/10.2174/1876534301407010076

3. Silva T., Grofulovic M., Klarenaar B. L.M., Morillo-Candas A. S., Guaitella O., Engeln R., Pintassilgo C.D., Guerra V., “Kinetic study of low-temperature CO2 plasmas under nonequilibrium conditions. I. Relaxation of vibrational energy”, Plasma Sources Sci. Technol. 27(1) (2018). https://doi.org/10.1088/1361-6595/aadb60

4. Nevdakh V., Ganjali M., “Vibrational kinetics of the active media of CW CO2 lasers”, Journal of Applied Spectroscopy 72, 75–83 (2005). https://doi.org/10.1007/s10812-005-0034-4

5. Kustova E.V., Nagnibeda E.A., “State-to-State Theory of Vibrational Kinetics and Dissociation in Three-Atomic Gases”, Rarefied Gas Dynamics 585, 620–627 (AIP Conference Proceeding, 2001). https://doi.org/10.1063/1.1407618

6. Sahai A., Lopez B.E., Johnston C.O., Panesi M., “Novel approach for CO2 state-to-state modeling and application to multi-dimensional entry flows”, AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting AIAA 2017-0213, 20 (2017). https://doi.org/10.2514/6.2017-0213

7. Kustova E.V., Nagnibeda E.A., “On a correct description of a multi-temperature dissociating CO2 flow”, Chem. Phys. 321, 293–310 (2006).

8. Kustova E.V., Nagnibeda E.A., “Kinetic model for multi-temperature flows of reacting carbon dioxide mixture”, Chem. Phys. 398, 111–117 (2012). https://doi.org/10.1016/j.chemphys.2005.08.026

9. Gear C.W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hal PTR, 1971).

10. Cash J.R., “On the Integration of Stiff Systems of O.D.E.S Using Extended Backward Differentiation Formulae”, Numer. Math. 34, 235–246 (1980).

11. Alberdi E., Anza J. J., “A Predictor Modification to the EBDF Method for Stiff Systems”, Journal of Computational Mathematics 29, 199–214 (2011).

12. Shampine L.F., “Error Estimation and Control for ODEs”, J. Sci. Comput. 25, 3–16 (2016). https://doi.org/10.1007/s10915-004-4629-3

13. Gorikhovskii V. I., Nagnibeda E.A., “Energy exchange rate coefficients in modeling carbon dioxide kinetics: calculation optimization”, Vestnik St. Petersb. Univ. Math. 52, 428–435 (2019). https://doi.org/10.1134/S1063454119040046

14. Lass M., Mohr S., Wiebeler H., K¨uhne T.D., Plessl C., “A Massively Parallel Algorithm for the Approximate Calculation of Inverse P-th Roots of Large Sparse Matrices”, PASC’18: Proceedings of the Platform for Advanced Scientific Computing Conference (7), 1–11. https://doi.org/10.1145/3218176.3218231

15. Herzberg G., Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Company, Inc., 1951).

16. Armenise I., Kustova E.V., “Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide”, J. Phys. Chem. 122, 5107–5120 (2018). https://doi.org/10.1021/acs.jpca.8b03266

17. Shwartz R.N., Slavsky Z. I., Herzfeld K.F., “Calculation of Vibrational Relaxation Times in Gases”, in: Thermodynamic Properties of Individual Substances, 399–420 (Nauka Publ., Moscow, 1962). (In Russian)

Published

2020-09-04

How to Cite

Gorikhovskii, V. I., & Nagnibeda, E. A. (2020). Optimization of CO2 vibrational kinetics modeling in the full state-to-state approach. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(3), 527–538. https://doi.org/10.21638/spbu01.2020.315

Issue

Section

Mechanics

Most read articles by the same author(s)