О сходимости и компактности по вариации со сдвигом дискретных вероятностных законов
DOI:
https://doi.org/10.21638/spbu01.2021.301Аннотация
Рассматривается класс дискретных функций распределения, чьи характеристические функции отделены от нуля, т. е. их модуль больше некой положительной константы на всей числовой оси. Данный класс достаточно широк: содержит дискретные безгранично делимые функции распределения, функции решетчатых распределений с характеристическими функциями без нулей на числовой прямой, а также функции распределения со скачком, большим 1/2. В недавней работе авторами было показано, что характеристические функции, соответствующие элементам этого класса, допускают представление типа Леви-Хинчина с немонотонной спектральной функцией, что включает данный класс в число так называемых квази-безгранично делимых функций распределения. Также для последовательностей из данного класса на основе указанных представлений были получены предельные теоремы и теоремы о компактности со сходимостью по вариации. В данной заметке получены аналогичные результаты о сходимости и компактности, но с несколько ослабленной сходимостью по вариации. Изменения типа сходимости значительно расширяют применимость этих результатов.Ключевые слова:
характеристические функции, представление типа Леви-Хинчина, квази-безгранично делимые законы, сходимость по вариации, относительная компактность, энтропия, коэффициент неопределенности, итерационная процедура, симптомно-синдромальный метод, редукция размерности, классификация, чувствительность, специфичность
Скачивания
Библиографические ссылки
Литература
References
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.