Ряд Лапласа эллипсоидальных фигур вращения
Аннотация
Теория фигур равновесия активно развивалась в XIX столетии, когда выяснились причины, по которым наблюдаемые массивные небесные тела (Солнце, планеты, спутники) обладают близкой к эллипсоидальной формой. Было установлено, что существуют и в точности эллипсоидальные фигуры. Гравитационный потенциал таких фигур представляется рядом Лапласа, коэффициенты которого (постоянные Стокса I n) определяются некоторым интегральным оператором. В случае эллипсоида вращения, эквиденситы (поверхности равной плотности) которого подобны, был найден общий член ряда, а для некоторых других распределений масс найдены первые члены ряда. Здесь мы получили общий член ряда при условии, что эквиденситы являются эллипсоидами вращения с возрастающим от центра к периферии сжатием. Получены также простые оценки и асимптотика I n. Оказалось, что асимптотика зависит только от средней плотности, плотности на поверхности внешнего эллипсоида и его сжатия. Библиогр. 12 назв. Ил. 1.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.