Устойчивость периодическихт очек диффеоморфизма плоскости в случае наличия гомоклинической орбиты
Аннотация
Рассматривается диффеоморфизм плоскости в себя с неподвижной гиперболической точкой в начале координат и нетрансверсальной гомоклинической к ней точкой. Периодические точки, лежащие в достаточно малой окрестности гомоклинической точки, делятся на однообходные и многообходные в зависимости от расположения орбиты периодической точки по отношению к орбите гомоклинической точки. Из работ Ш. Ньюхауса, Л. П. Шильникова, Б. Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого многообразия с неустойчивым в окрестности нетрансверсальной гомоклинической точки может лежать бесконечное множество устойчивых периодических точек, но, по крайней мере один из характеристических показателей этих точек стремится к нулю с ростом периода. Из прежних работ автора следует, что при ином способе касания устойчивого многообразия с неустойчивым в окрестности нетрансверсальной гомоклинической точки может лежать бесконечное множество устойчивых однообходных периодических точек, характеристические показатели которых отделены от нуля. В данной работе показано, что при определенных условиях, наложенных, прежде всего, на способ касания устойчивого многообразия с неустойчивым, любая окрестность нетрансверсальной гомоклинической точки может содержать счетное множество устойчивых двухобходных периодических точек с отделенными от нуля характеристическими показателями.
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.