Torsion points of generalized Honda formal groups
DOI:
https://doi.org/10.21638/spbu01.2020.403Abstract
Generalized Honda formal groups are a new class of formal groups that in particular describes the formal groups over the ring of integers of local fields weakly ramified over Qp. It is the next class in the chain the multiplicative formal group — Lubin — Tate formal groups — Honda formal groups. Lubin — Tate formal groups are defined by distinguished endomorphisms [π]F , Honda formal groups possess distinguished omomorphisms that factor through [π]F and in the present paper we prove that for generalized Honda formal groups it is compositions of distinguished homomorphisms that factor through [π]F . As an application of this fact, some properties of πn-torsion points of generalized Honda formal groups are studied.Keywords:
formal groups, torsion points
Downloads
Download data is not yet available.
References
Литература
1. Honda T. On the theory of commutative formal groups // J. Math. Soc. Japan. 1970. Vol. 22. Р. 213–246.
2. Бенуа Д. Г., Востоков С. В. Норменное спаривание в формальных группах и представления Галуа // Алгебра и анализ. 1990. T. 2. Вып. 6. С. 69–97.
3. Демченко О. В. Формальные группы Хонды: арифметика группы точек // Алгебра и анализ. 2000. T. 12. Вып. 1. С. 132–149.
4. Демченко О. В. Формальные группы над p-адическими кольцами целых с малым ветвлением и выделенные изогении // Алгебра и анализ. 2002. T. 14. Вып. 3. С. 55–85.
5. Демченко О. В. Новое в отношениях формальных групп Любина — Тэйта и формальных групп Хонды // Алгебра и анализ. 1998. T. 10. Вып. 5. С. 77–84.
References
1. Honda T., “On the theory of commutative formal groups”, J. Math. Soc. Japan 22, 213–246 (1970).
2. Benois D. G., Vostokov S. V., “Norm pairing in formal groups and Galois representations”, Leningrad Math. J. 2 (6), 1221–1249 (1991).
3. Demchenko O., “New relationship between formal Lubin — Tate groups and formal Honda groups”, St. Petersburg Math. J. 10 (5), 785–789 (1999).
4. Demchenko O. V., “Honda formal groups: the arithmetic of the group of points”, St. Petersburg Math. J. 12 (1), 101–115 (2001).
5. Demchenko O. V., “Formal groups over p-adic rings of integers with small ramification and distinguished isogenies”, St. Petersburg Math. J. 14 (3), 405–428 (2003).
Downloads
Published
2020-12-27
How to Cite
Demchenko, O. V., & Vostokov, S. V. (2020). Torsion points of generalized Honda formal groups. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(4), 597–606. https://doi.org/10.21638/spbu01.2020.403
Issue
Section
On the anniversary of S. V. Vostokov
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.