Generalized normal forms of the systems of ordinary differential equations with a quasi-homogeneous polynomial (ax1^2 + x2, x1x2) in the unperturbed part

Authors

  • Vladimir V. Basov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Artem V. Zefirov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu01.2021.102

Abstract

In this paper a study on constructive construction of the generalized normal forms (GNF) is continued. The planar real-analytical at the origin system is considered. Its unperturbed part forms a first degree quasi-homogeneous first degree polynomial (αx21 + x2, x1x2) of type (1, 2) where parameter α ∈ 2 (-1/2, 0)[(0, 1/2]. For given value of this polynomial is a canonical form, that is an element of a class of equivalence relative to quasi-homogeneous substitutions of zero order into which any first order quasi-homogeneous polynomial of type (1, 2) is divided in accordance with the chosen structural principles due to it only making sense to reduce the systems with the various canonical forms in their unperturbed part to GNF. Based on the constructive method of resonance equations and sets, the resonance equations are derived. Perturbations of the acquired system satisfies these equations if an almost identity quasi-homogeneous substitution in the given system is applied. Their validity guarantees formal equivalence of the systems. Besides, resonance sets of coefficients are specified that allows to get all possible GNF structures and prove reducibility of the given system to a GNF with any of specified structures. In addition, some examples of characteristic GNFs are provided including that with the parameter leading to appearance of an additional resonance equation and the second nonzero coefficient of the appropriate orders in GNFs.

Keywords:

Generalized normal form, Quasi-homogeneous polynomial, esonance equation

Downloads

 

References

Литература

1. Басов В.В. Обобщенная нормальная форма и формальная эквивалентность систем дифференциальных уравнений с нулевыми характеристическими числами. Дифференц. уравнения 39 (2), 154–170 (2003).

2. Басов В.В., Федотов А.А. Обобщенная нормальная форма двумерных систем ОДУ с линейно-квадратичной невозмущенной частью. Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия, вып. 1, 13–33 (2007).

3. Басов В.В., Слуцкая А. Г. Обобщенные нормальные формы двумерных вещественных систем ОДУ с квазиоднородным полиномом в невозмущенной части. Дифференц. уравнения и процессы управления (4), 108–133 (2010).

4. Басов В.В., Скитович А.В. Обобщенная нормальная форма и формальная эквивалентность двумерных систем с нулевым квадратичным приближением. I. Дифференц. уравнения 39 (8), 1016–1029 (2003).

5. Kokubu H., Oka H., Wang D. Linear grading function and further reduction of normal forms. J. Diff. Eq. 132, 293–318 (1996).

6. Богданов Р.И. Версальная деформация особой точки векторного поля на плоскости в случае нулевых собственных чисел. Функц. анализ и его прил. 9 (2), 63 (1975).

7. Takens F. Singularities of vector fields. IHES 43 (2), 47–100 (1974).

8. Baider A., Sanders J. Further reduction of the Takens-Bogdanov normal form. J. Diff. Eq. 99, 205–244 (1992).

9. Белицкий Г.Р. Нормальные формы, инварианты и локальные отображения. Киев, Наукова думка (1979).

10. Брюно А.Д., Петрович В.Ю. Нормальные формы системы ОДУ. Препринты ИПМ им. М. В. Келдыша, 18 (2000).

References

1. Basov V.V. Generalized normal forms and formal equivalence of systems of differential equations with zero eigenvalues Differential Equations 39 (2), 154–170 (2003). (In Russian)

2. Basov V.V., Fedotov A.A. Generalized normal forms for two-dimensional systems of ordinary differential equations with linear and quadratic unperturbed parts. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, iss. 1, 13–33 (2007). (In Russian) [Engl. transl.: Vestnik St. Petersb. Univ. Math. 40, iss. 1, 6–26 (2007). https://doi.org/10.3103/S1063454107010025].

3. Basov V.V., Slutskaya A.G. Generalized normal forms for two-dimensional real systems of ordinary differential equations with quasi-homogeneous polynomial in unperturbed part. Differential Equations and Control Processes (4), 108–133 (2010). (In Russian)

4. Basov V.V., Skitovich A.V. A generalized normal form and formal equivalence of twodimensional systems with quadratic zero approximation. I. Differ. Uravn. 39 (8), 1067–1081 (2003). (In Russian) [Engl. transl.: Differ. Equ. 39 (8), 1067–1081 (2003). https://doi.org/10.1023/B:DIEQ.0000011279.99967.1d].

5. Kokubu H., Oka H., Wang D. Linear grading function and further reduction of normal forms. J. Diff. Eq. 132, 293–318 (1996).

6. Bogdanov R. Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues. Funktsional. Anal. i Prilozhen. 9 (2), 63 (1975). (In Russian) [Engl. transl.: Funct. Anal. Appl. 9 (2), 144–145 (1975). https://doi.org/10.1007/BF01075453].

7. Takens F. Singularities of vector fields. IHES 43 (2), 47–100 (1974).

8. Baider A., Sanders J. Further reduction of the Takens-Bogdanov normal form. J. Diff. Eq. 99, 205–244 (1992).

9. Belickii G.R. Normal forms, invariants and local mappings. Kiev, Naukova Dumka Publ. (1979). (In Russian)

10. Bruno A.D., Petrovich V.Yu. Normal forms of system of ODE. Keldysh Institute preprints, 18 (2000). (In Russian)

Published

2021-05-29

How to Cite

Basov, V. V., & Zefirov, A. V. (2021). Generalized normal forms of the systems of ordinary differential equations with a quasi-homogeneous polynomial (ax1^2 + x2, x1x2) in the unperturbed part. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8(1), 12–28. https://doi.org/10.21638/spbu01.2021.102

Issue

Section

Mathematics

Most read articles by the same author(s)

1 2 > >>