The space of Keplerian orbits and a family of its quotient spaces
DOI:
https://doi.org/10.21638/spbu01.2021.215Abstract
Distance functions on the set of Keplerian orbits play an important role in solving problems of searching for parent bodies of meteoroid streams. A special kind of such functions are distances in the quotient spaces of orbits. Three metrics of this type were developed earlier. These metrics allow to disregard the longitude of ascending node or the argument of pericenter or both. Here we introduce one more quotient space, where two orbits are considered identical if they differ only in their longitudes of nodes and arguments of pericenters, but have the same sum of these elements (the longitude of pericenter). The function q is defined to calculate distance between two equivalence classes of orbits. The algorithm for calculation of ̺6 value is provided along with a reference to the corresponding program, written in C++ language. Unfortunately, ̺6 is not a full-fledged metric. We proved that it satisfies first two axioms of metric space, but not the third one: the triangle inequality does not hold, at least in the case of large eccentricities. However there are two important particular cases when the triangle axiom is satisfied: one of three orbits is circular, longitudes of pericenters of all three orbits coincide. Perhaps the inequality holds for all elliptic orbits, but this is a matter of future research.Keywords:
Keplerian orbit, metric, quotient space of metric space, distance between orbits
Downloads
References
Литература
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.